Multiplicative Rank-1 Approximation using Length-Squared Sampling

Ragesh Jaiswal, Amit Kumar
{"title":"Multiplicative Rank-1 Approximation using Length-Squared Sampling","authors":"Ragesh Jaiswal, Amit Kumar","doi":"10.1137/1.9781611976014.4","DOIUrl":null,"url":null,"abstract":"We show that the span of $\\Omega(\\frac{1}{\\varepsilon^4})$ rows of any matrix $A \\subset \\mathbb{R}^{n \\times d}$ sampled according to the length-squared distribution contains a rank-$1$ matrix $\\tilde{A}$ such that $||A - \\tilde{A}||_F^2 \\leq (1 + \\varepsilon) \\cdot ||A - \\pi_1(A)||_F^2$, where $\\pi_1(A)$ denotes the best rank-$1$ approximation of $A$ under the Frobenius norm. Length-squared sampling has previously been used in the context of rank-$k$ approximation. However, the approximation obtained was additive in nature. We obtain a multiplicative approximation albeit only for rank-$1$ approximation.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"24 1","pages":"18-23"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976014.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the span of $\Omega(\frac{1}{\varepsilon^4})$ rows of any matrix $A \subset \mathbb{R}^{n \times d}$ sampled according to the length-squared distribution contains a rank-$1$ matrix $\tilde{A}$ such that $||A - \tilde{A}||_F^2 \leq (1 + \varepsilon) \cdot ||A - \pi_1(A)||_F^2$, where $\pi_1(A)$ denotes the best rank-$1$ approximation of $A$ under the Frobenius norm. Length-squared sampling has previously been used in the context of rank-$k$ approximation. However, the approximation obtained was additive in nature. We obtain a multiplicative approximation albeit only for rank-$1$ approximation.
使用长度平方抽样的乘法秩-1近似
我们证明了根据长度平方分布采样的任意矩阵$A \subset \mathbb{R}^{n \times d}$的$\Omega(\frac{1}{\varepsilon^4})$行的张成包含一个秩$1$矩阵$\tilde{A}$,使得$||A - \tilde{A}||_F^2 \leq (1 + \varepsilon) \cdot ||A - \pi_1(A)||_F^2$,其中$\pi_1(A)$表示在Frobenius范数下$A$的最佳秩$1$近似。长度平方抽样以前被用于秩- $k$近似。然而,所得到的近似本质上是加性的。我们得到了一个乘法近似,尽管只有秩- $1$近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信