Tian Xiao, Liu Lu, Chenlei Yu, S. Boetcher, Xiaohu Yang, Moxiao Li, T. Lu
{"title":"Analytical Fractal Model for Effective Thermal Conductivity of Open-Cell Metallic Foams with Coated Hollow Ligaments","authors":"Tian Xiao, Liu Lu, Chenlei Yu, S. Boetcher, Xiaohu Yang, Moxiao Li, T. Lu","doi":"10.1115/1.4063149","DOIUrl":null,"url":null,"abstract":"\n Coating the hollow ligaments of open-cell (fluid-through) metallic foams (MFs) fabricated via the sintering route with a thin layer of graphene can improve the effective thermal conductivity (ETC) of the foam without significantly increasing its flow resistance, potentially important for thermal storage applications. However, the Euclidean geometry cannot accurately depict the random distribution of pores within MFs. To this end, the present study aims to analyze how such thin coatings affect the ETC of MF by employing the fractal theory to depict the random distribution of its open pores. Subsequently, a cubic representative structure (RS) is chosen for self-similar pores in the fractal to establish a correlation between the geometric parameters of MF and its fractal dimension. Upon determining the thermal resistance provided a RS of the foam having coated hollow ligaments, its ETC is derived as a function of fractal dimension, dimensionless parameters of pore size, porosity, and thermal conductivity of relevant materials (e.g., ligaments, coatings, and filling medium). For validation, existing experimental data are used to compare with analytical predictions, with good agreement achieved. It is demonstrated that the ligament hollowness weakens the thermal conduction of MFs. In addition, when the coating has a thermal conductivity greater than that of ligament, the coating enhances the ability of the foam to conduct heat. Although the ligament hollowness and coating thickness are imperative factors affecting the ETC, the material makes of ligament and coating plays a decisive role in the ETC.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"39 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coating the hollow ligaments of open-cell (fluid-through) metallic foams (MFs) fabricated via the sintering route with a thin layer of graphene can improve the effective thermal conductivity (ETC) of the foam without significantly increasing its flow resistance, potentially important for thermal storage applications. However, the Euclidean geometry cannot accurately depict the random distribution of pores within MFs. To this end, the present study aims to analyze how such thin coatings affect the ETC of MF by employing the fractal theory to depict the random distribution of its open pores. Subsequently, a cubic representative structure (RS) is chosen for self-similar pores in the fractal to establish a correlation between the geometric parameters of MF and its fractal dimension. Upon determining the thermal resistance provided a RS of the foam having coated hollow ligaments, its ETC is derived as a function of fractal dimension, dimensionless parameters of pore size, porosity, and thermal conductivity of relevant materials (e.g., ligaments, coatings, and filling medium). For validation, existing experimental data are used to compare with analytical predictions, with good agreement achieved. It is demonstrated that the ligament hollowness weakens the thermal conduction of MFs. In addition, when the coating has a thermal conductivity greater than that of ligament, the coating enhances the ability of the foam to conduct heat. Although the ligament hollowness and coating thickness are imperative factors affecting the ETC, the material makes of ligament and coating plays a decisive role in the ETC.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.