Hubbard model on the Bethe lattice via variational uniform tree states: Metal-insulator transition and a Fermi liquid

P. Lunts, A. Georges, E. Stoudenmire, M. Fishman
{"title":"Hubbard model on the Bethe lattice via variational uniform tree states: Metal-insulator transition and a Fermi liquid","authors":"P. Lunts, A. Georges, E. Stoudenmire, M. Fishman","doi":"10.1103/PHYSREVRESEARCH.3.023054","DOIUrl":null,"url":null,"abstract":"We numerically solve the Hubbard model on the Bethe lattice with finite coordination number $z=3$, and determine its zero-temperature phase diagram. For this purpose, we introduce and develop the `variational uniform tree state' (VUTS) algorithm, a tensor network algorithm which generalizes the variational uniform matrix product state algorithm to tree tensor networks. Our results reveal an antiferromagnetic insulating phase and a paramagnetic metallic phase, separated by a first-order doping-driven metal-insulator transition. We show that the metallic state is a Fermi liquid with coherent quasiparticle excitations for all values of the interaction strength $U$, and we obtain the finite quasiparticle weight $Z$ from the single-particle occupation function of a generalized \"momentum\" variable. We find that $Z$ decreases with increasing $U$, ultimately saturating to a non-zero, doping-dependent value. Our work demonstrates that tensor-network calculations on tree lattices, and the VUTS algorithm in particular, are a platform for obtaining controlled results for phenomena absent in one dimension, such as Fermi liquids, while avoiding computational difficulties associated with tensor networks in two dimensions. We envision that future studies could observe non-Fermi liquids, interaction-driven metal-insulator transitions, and doped spin liquids using this platform.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.023054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We numerically solve the Hubbard model on the Bethe lattice with finite coordination number $z=3$, and determine its zero-temperature phase diagram. For this purpose, we introduce and develop the `variational uniform tree state' (VUTS) algorithm, a tensor network algorithm which generalizes the variational uniform matrix product state algorithm to tree tensor networks. Our results reveal an antiferromagnetic insulating phase and a paramagnetic metallic phase, separated by a first-order doping-driven metal-insulator transition. We show that the metallic state is a Fermi liquid with coherent quasiparticle excitations for all values of the interaction strength $U$, and we obtain the finite quasiparticle weight $Z$ from the single-particle occupation function of a generalized "momentum" variable. We find that $Z$ decreases with increasing $U$, ultimately saturating to a non-zero, doping-dependent value. Our work demonstrates that tensor-network calculations on tree lattices, and the VUTS algorithm in particular, are a platform for obtaining controlled results for phenomena absent in one dimension, such as Fermi liquids, while avoiding computational difficulties associated with tensor networks in two dimensions. We envision that future studies could observe non-Fermi liquids, interaction-driven metal-insulator transitions, and doped spin liquids using this platform.
通过变分均匀树态的贝特晶格上的哈伯德模型:金属-绝缘体跃迁和费米液体
在有限配位数$z=3$的Bethe晶格上对Hubbard模型进行了数值求解,并确定了其零温度相图。为此,我们引入并发展了“变分一致树状态”(VUTS)算法,这是一种将变分一致矩阵积状态算法推广到树张量网络的张量网络算法。我们的结果揭示了反铁磁绝缘相和顺磁性金属相,由一阶掺杂驱动的金属-绝缘体转变分离。我们证明了金属态是具有相干准粒子激发的费米液体,其相互作用强度为$U$,并且我们从广义动量变量的单粒子占据函数中得到了有限准粒子质量$Z$。我们发现$Z$随着$U$的增加而减小,最终饱和到一个非零的、与掺杂相关的值。我们的工作表明,树格上的张量网络计算,特别是VUTS算法,是一个平台,可以获得一维中不存在的现象(如费米液体)的受控结果,同时避免与二维张量网络相关的计算困难。我们设想未来的研究可以使用这个平台观察非费米液体、相互作用驱动的金属绝缘体转变和掺杂自旋液体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信