A numerical model for the nonlinear interaction of elastic waves with cracks

H. Rusmanugroho, A. Malcolm, Meghdad Darijani
{"title":"A numerical model for the nonlinear interaction of elastic waves with cracks","authors":"H. Rusmanugroho, A. Malcolm, Meghdad Darijani","doi":"10.1121/2.0000851","DOIUrl":null,"url":null,"abstract":"It is reasonably well accepted that cracks play a significant role in the nonlinear interactions of elastic waves, but the precise mechanism of why and how this works is less clear. Here, we simulate wave propagation to understand these mechanisms. Following existing techniques, we formulate the stress in terms of its linear and nonlinear contributions. The linear stress is the generalized Hooke’s law involving only the fourth-rank elastic stiffness tensor. The nonlinear stress comes from the product of the fourth- and sixth-rank tensors, and the spatial derivatives of the displacement vector. In a nonlinear isotropic medium, we show that the speeds of P- and S-waves generated by a time-harmonic source-function are not constant over time. In an anisotropic medium, P-wave speed is commonly estimated using effective medium theory. In the linear slip theory, we represent a crack by a displacement discontinuity embedded in an isotropic background. In a cracked medium, the estimated wave speeds show nonlinear ...","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

It is reasonably well accepted that cracks play a significant role in the nonlinear interactions of elastic waves, but the precise mechanism of why and how this works is less clear. Here, we simulate wave propagation to understand these mechanisms. Following existing techniques, we formulate the stress in terms of its linear and nonlinear contributions. The linear stress is the generalized Hooke’s law involving only the fourth-rank elastic stiffness tensor. The nonlinear stress comes from the product of the fourth- and sixth-rank tensors, and the spatial derivatives of the displacement vector. In a nonlinear isotropic medium, we show that the speeds of P- and S-waves generated by a time-harmonic source-function are not constant over time. In an anisotropic medium, P-wave speed is commonly estimated using effective medium theory. In the linear slip theory, we represent a crack by a displacement discontinuity embedded in an isotropic background. In a cracked medium, the estimated wave speeds show nonlinear ...
弹性波与裂纹非线性相互作用的数值模型
人们普遍认为裂缝在弹性波的非线性相互作用中起着重要的作用,但为什么以及如何起作用的确切机制尚不清楚。在这里,我们模拟波的传播来理解这些机制。根据现有的技术,我们根据其线性和非线性贡献来制定应力。线性应力是只涉及四阶弹性刚度张量的广义胡克定律。非线性应力来源于四阶张量和六阶张量的乘积,以及位移矢量的空间导数。在非线性各向同性介质中,我们证明了由时间谐波源函数产生的P波和s波的速度随时间变化不是恒定的。在各向异性介质中,通常用有效介质理论估计纵波速度。在线性滑移理论中,我们用嵌入在各向同性背景中的位移不连续来表示裂缝。在裂纹介质中,估计的波速呈现非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信