{"title":"Mechanism and Prevention of Agglomeration/Defluidization during Fluidized-Bed Reduction of Iron Ore","authors":"Y. Zhong, Jintao Gao, Zhancheng Guo, Zhi Wang","doi":"10.5772/INTECHOPEN.68488","DOIUrl":null,"url":null,"abstract":"The mechanisms of agglomeration and defluidization and fluidization characteristic of iron oxide particles were investigated based on the theory of surface diffusion, interface reaction, surface nano/microeffect, and phase transformation. Moreover, a mathematical model was developed to predict the high-temperature defluidization behavior by the force-balance and plastic-viscous flow mechanism, and the fluidization phase diagram was obtained. On these bases, a control method of defluidization and its inhibition mechanism were proposed. As a result, the theoretical system of agglomeration/defluidization in the gas-solid fluidization was developed, and thus afforded theory support and techno-logical bases for the solution of defluidization in industrial fluidized-bed reactors.","PeriodicalId":14641,"journal":{"name":"Iron Ores and Iron Oxide Materials","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iron Ores and Iron Oxide Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.68488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The mechanisms of agglomeration and defluidization and fluidization characteristic of iron oxide particles were investigated based on the theory of surface diffusion, interface reaction, surface nano/microeffect, and phase transformation. Moreover, a mathematical model was developed to predict the high-temperature defluidization behavior by the force-balance and plastic-viscous flow mechanism, and the fluidization phase diagram was obtained. On these bases, a control method of defluidization and its inhibition mechanism were proposed. As a result, the theoretical system of agglomeration/defluidization in the gas-solid fluidization was developed, and thus afforded theory support and techno-logical bases for the solution of defluidization in industrial fluidized-bed reactors.