Accuracy of automatic forecasting methods for univariate time series data: A case study predicting the results of the 2018 Swedish general election using decades-long data series

Q4 Mathematics
A. Rosenblad
{"title":"Accuracy of automatic forecasting methods for univariate time series data: A case study predicting the results of the 2018 Swedish general election using decades-long data series","authors":"A. Rosenblad","doi":"10.1080/23737484.2021.1964407","DOIUrl":null,"url":null,"abstract":"Abstract This study compared the accuracy of automatic time series forecasting methods in predicting the results of the 2018 Swedish general election using data from the Party Preference Survey opinion poll collected during the years 1984–2018. The general exponential smoothing state space (ETS) model performed best, outperforming even the exit poll collected at the time of the election, while the complex seasonal autoregressive integrated moving average (ARIMA) model was beaten by the simple exponential smoothing method. Holt’s linear trend method performed worse than even the naïve method. The results of this study show the usefulness of easily applied automatic forecasting methods.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"8 1","pages":"475 - 493"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1964407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This study compared the accuracy of automatic time series forecasting methods in predicting the results of the 2018 Swedish general election using data from the Party Preference Survey opinion poll collected during the years 1984–2018. The general exponential smoothing state space (ETS) model performed best, outperforming even the exit poll collected at the time of the election, while the complex seasonal autoregressive integrated moving average (ARIMA) model was beaten by the simple exponential smoothing method. Holt’s linear trend method performed worse than even the naïve method. The results of this study show the usefulness of easily applied automatic forecasting methods.
单变量时间序列数据自动预测方法的准确性:使用数十年的数据序列预测2018年瑞典大选结果的案例研究
本研究使用1984-2018年政党偏好调查民意调查数据,比较了自动时间序列预测方法预测2018年瑞典大选结果的准确性。一般指数平滑状态空间(ETS)模型表现最好,甚至优于选举时收集的出口民意调查,而复杂季节性自回归综合移动平均(ARIMA)模型则被简单指数平滑方法击败。Holt的线性趋势方法甚至比naïve方法表现得更差。本研究结果显示了易于应用的自动预测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信