{"title":"Entanglement Entropy of Compton Scattering with a Witness","authors":"Shanmuka Shivashankara","doi":"10.1139/cjp-2023-0142","DOIUrl":null,"url":null,"abstract":"Unitarity and the optical theorem are used to derive the reduced density matrices of Compton scattering in the presence of a witness particle. Two photons are initially entangled wherein one photon participates in Compton scattering while the other is a witness, i.e. does not interact with the electron. Unitarity is shown to require that the entanglement entropy of the witness photon does not change after its entangled partner undergoes scattering. The final mutual information of the electron and witness particle's polarizations is shown to be nonzero for low energy Compton scattering. This indicates that the two particles became correlated in spite of no direct interaction. Assuming an initial maximally entangled state, the change in entanglement entropy of the scattered photon's polarization is calculated in terms of Stokes parameters. A common ratio of areas occurs in the final reduced density matrix elements, von Neumann entropies, Stokes parameter, and mutual information. This common ratio consists of the Thomson scattering cross-section and an accessible regularized scattering area.","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0142","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Unitarity and the optical theorem are used to derive the reduced density matrices of Compton scattering in the presence of a witness particle. Two photons are initially entangled wherein one photon participates in Compton scattering while the other is a witness, i.e. does not interact with the electron. Unitarity is shown to require that the entanglement entropy of the witness photon does not change after its entangled partner undergoes scattering. The final mutual information of the electron and witness particle's polarizations is shown to be nonzero for low energy Compton scattering. This indicates that the two particles became correlated in spite of no direct interaction. Assuming an initial maximally entangled state, the change in entanglement entropy of the scattered photon's polarization is calculated in terms of Stokes parameters. A common ratio of areas occurs in the final reduced density matrix elements, von Neumann entropies, Stokes parameter, and mutual information. This common ratio consists of the Thomson scattering cross-section and an accessible regularized scattering area.
期刊介绍:
The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.