Detailed Identification of Fingerprints Using Convolutional Neural Networks

Y. Shehu, Ariel Ruiz-Garcia, V. Palade, Anne James
{"title":"Detailed Identification of Fingerprints Using Convolutional Neural Networks","authors":"Y. Shehu, Ariel Ruiz-Garcia, V. Palade, Anne James","doi":"10.1109/ICMLA.2018.00187","DOIUrl":null,"url":null,"abstract":"Fingerprints, as one of the most widely used biometric modalities, can be used to identify and distinguish between genders. Gender classification is very important in reducing the time when investigating criminal offenders and gender impersonation. In this work, we use deep Convolutional Neural Networks (CNNs) to not only classify fingerprints by gender, but also identify individual hands and fingers. Transfer learning is employed to speed up the training of the CNN. The CNN achieves an accuracy of 75.2%, 93.5%, and 76.72% for the classification of gender, hand, and fingers, respectively. These results obtained using our publicly available Sokoto Coventry Fingerprint Dataset (SOCOFing) serve as benchmark classification results on this dataset.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"35 1","pages":"1161-1165"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Fingerprints, as one of the most widely used biometric modalities, can be used to identify and distinguish between genders. Gender classification is very important in reducing the time when investigating criminal offenders and gender impersonation. In this work, we use deep Convolutional Neural Networks (CNNs) to not only classify fingerprints by gender, but also identify individual hands and fingers. Transfer learning is employed to speed up the training of the CNN. The CNN achieves an accuracy of 75.2%, 93.5%, and 76.72% for the classification of gender, hand, and fingers, respectively. These results obtained using our publicly available Sokoto Coventry Fingerprint Dataset (SOCOFing) serve as benchmark classification results on this dataset.
基于卷积神经网络的指纹详细识别
指纹作为一种应用最广泛的生物识别方式,可以用于性别的识别和区分。性别分类对于减少刑事犯罪和性别假冒案件的侦办时间具有十分重要的意义。在这项工作中,我们使用深度卷积神经网络(cnn)不仅可以根据性别对指纹进行分类,还可以识别单个手和手指。采用迁移学习来加快CNN的训练速度。CNN对性别、手和手指的分类准确率分别达到了75.2%、93.5%和76.72%。这些结果使用我们公开的索科托考文垂指纹数据集(SOCOFing)获得,作为该数据集的基准分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信