Audio classification systems using deep neural networks and an event-driven auditory sensor

Enea Ceolini, I. Kiselev, Shih-Chii Liu
{"title":"Audio classification systems using deep neural networks and an event-driven auditory sensor","authors":"Enea Ceolini, I. Kiselev, Shih-Chii Liu","doi":"10.1109/SENSORS43011.2019.8956592","DOIUrl":null,"url":null,"abstract":"We describe ongoing research in developing audio classification systems that use a spiking silicon cochlea as the front end. Event-driven features extracted from the spikes are fed to deep networks for the intended task. We describe a classification task on naturalistic audio sounds using a low-power silicon cochlea that outputs asynchronous events through a send-on-delta encoding of its sharply-tuned cochlea channels. Because of the event-driven nature of the processing, silences in these naturalistic sounds lead to corresponding absence of cochlea spikes and savings in computes. Results show 48% savings in computes with a small loss in accuracy using cochlea events.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"CE-30 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe ongoing research in developing audio classification systems that use a spiking silicon cochlea as the front end. Event-driven features extracted from the spikes are fed to deep networks for the intended task. We describe a classification task on naturalistic audio sounds using a low-power silicon cochlea that outputs asynchronous events through a send-on-delta encoding of its sharply-tuned cochlea channels. Because of the event-driven nature of the processing, silences in these naturalistic sounds lead to corresponding absence of cochlea spikes and savings in computes. Results show 48% savings in computes with a small loss in accuracy using cochlea events.
使用深度神经网络和事件驱动听觉传感器的音频分类系统
我们描述了正在进行的研究,开发音频分类系统,使用一个尖峰硅耳蜗作为前端。从峰值中提取的事件驱动特征被馈送到深度网络,用于预期的任务。我们描述了一个使用低功耗硅耳蜗的自然音频分类任务,该耳蜗通过其调谐耳蜗通道的增量上发送编码输出异步事件。由于处理的事件驱动性质,这些自然声音中的沉默导致相应的耳蜗峰值的缺失和计算机的节省。结果显示,使用耳蜗事件可以节省48%的计算成本,而准确性稍有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信