An inordinate fondness for inconspicuous brown frogs: integration of phylogenomics, archival DNA analysis, morphology, and bioacoustics yields 24 new taxa in the subgenus Brygoomantis (genus Mantidactylus) from Madagascar

Megataxa Pub Date : 2022-12-15 DOI:10.11646/megataxa.7.2.1
Mark D. Scherz, A. Crottini, C. Hutter, Andrea Hildenbrand, F. Andreone, T. Fulgence, G. Köhler, S. Ndriantsoa, A. Ohler, M. Preick, Andolalao Rakotoarison, Loïs Rancilhac, A. P. Raselimanana, Jana C. Riemann, Mark‐Oliver Rödel, G. Rosa, Jeffrey W. Streicher, D. Vieites, J. Köhler, M. Hofreiter, F. Glaw, M. Vences
{"title":"An inordinate fondness for inconspicuous brown frogs: integration of phylogenomics, archival DNA analysis, morphology, and bioacoustics yields 24 new taxa in the subgenus Brygoomantis (genus Mantidactylus) from Madagascar","authors":"Mark D. Scherz, A. Crottini, C. Hutter, Andrea Hildenbrand, F. Andreone, T. Fulgence, G. Köhler, S. Ndriantsoa, A. Ohler, M. Preick, Andolalao Rakotoarison, Loïs Rancilhac, A. P. Raselimanana, Jana C. Riemann, Mark‐Oliver Rödel, G. Rosa, Jeffrey W. Streicher, D. Vieites, J. Köhler, M. Hofreiter, F. Glaw, M. Vences","doi":"10.11646/megataxa.7.2.1","DOIUrl":null,"url":null,"abstract":"Malagasy frogs of the subgenus Brygoomantis in the mantellid frog genus Mantidactylus currently comprise 14 described species of mostly brown, riparian frogs. Data from DNA barcoding suggested that the diversity of this subgenus is dramatically underestimated by current taxonomy. We here provide a comprehensive revision of this subgenus. We use hybrid-enrichment based DNA barcode fishing to obtain mitochondrial DNA fragments from the name-bearing type material of 16 of the 20 available names for members of this subgenus, and integrate these into a genetic dataset consisting of 1305 individuals sampled across Madagascar. By thus assigning the nomina to genetic lineages, we can confidently establish synonyms, revalidate old names, and describe the remaining diversity. We take an integrative approach to our descriptions, drawing together genetics, morphometrics and morphology, and bioacoustics for assignment. We also provide a robust phylogenomic hypothesis for the subgenus, based on 12,951 nuclear-encoded markers (almost 10 million base pairs) for 58 representative samples, sequenced using a hybrid-enrichment bait set for amphibians. Those data suggest a division of the subgenus into eight major clades and shows that morphological species complexes are often paraphyletic or polyphyletic. Lectotypes are designated for Rana betsileana Boulenger, 1882; Rana biporus Boulenger, 1889; Rana curta Boulenger, 1882; Mantidactylus ambohimitombi Boulenger, 1918; Mantidactylus tripunctatus Angel, 1930; and Rana inaudax Peracca, 1893. For several other nomina, previous authors had considered a certain syntype as holotype; this has been seen as lectotype designation by implication, which, however, is ambiguous according to the provisions of the International Code of Zoological Nomenclature. Hence, we validate a previous lectotype designation by implication for Limnodytes ulcerosus Boettger, 1880 by explicitly designating the same individual as lectotype. In one other such case, that of Mantidactylus brauni Ahl, 1929, we deviate from previous authors and designate a different specimen as lectotype. We revalidate Rana inaudax Peracca, 1893 as Mantidactylus inaudax (Peracca, 1893) bona species, and Mantidactylus tripunctatus Angel, 1930 bona species. The identities of three further species (M. ambohimitombi, M. biporus, M. tricinctus) are largely redefined based on new genetic data. By designating the lectotype of Rana aluta (MZUT An725.1) as the neotype of Mantidactylus laevis Angel, 1929 we also stabilize the latter nomen (as junior synonym of M. alutus) whose original type material is lost. Based on DNA sequences of its lectotype, we consider Mantidactylus brauni Ahl, 1929 as junior synonym of M. ulcerosus (rather than M. biporus). We formally name 20 new species and four new subspecies: M. ambohimitombi marefo ssp. nov., M. ambohimitombi miloko ssp. nov., M. mahery sp. nov., M. steinfartzi sp. nov., M. incognitus sp. nov., M. jonasi sp. nov., M. katae sp. nov., M. kortei sp. nov., M. riparius sp. nov., M. fergusoni sp. nov., M. georgei sp. nov., M. jahnarum sp. nov., M. marintsoai sp. nov., M. grubenmanni sp. nov., M. gudrunae sp. nov., M. augustini sp. nov., M. bletzae sp. nov., M. brevirostris sp. nov., M. eulenbergeri sp. nov., M. glosi sp. nov., M. stelliger sp. nov., M. manerana sp. nov., M. manerana fotaka ssp. nov., and M. manerana antsanga ssp. nov. Based on our taxonomic revision, we discuss (i) the importance of definitive assignment of historical names via archival DNA analysis; (ii) the relevance of the subspecies category to name geographic variation within species; (iii) the value of molecular characters in formal species diagnoses in taxa with substantial individual variation of morphology; (iv) the use of phylogenomic approaches for taxonomy, by confirming that some morphologically similar taxa are not each other’s closest relatives, and in several cases belong to entirely different major subclades within Brygoomantis, thus facilitating lineage diagnosis; and (v) the need to interpret genetic distances in a probabilistic framework rather than using fixed thresholds, where higher distances confer a higher likelihood of genetic incompatibilities across the genome and thus completion of speciation.","PeriodicalId":52569,"journal":{"name":"Megataxa","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Megataxa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11646/megataxa.7.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Malagasy frogs of the subgenus Brygoomantis in the mantellid frog genus Mantidactylus currently comprise 14 described species of mostly brown, riparian frogs. Data from DNA barcoding suggested that the diversity of this subgenus is dramatically underestimated by current taxonomy. We here provide a comprehensive revision of this subgenus. We use hybrid-enrichment based DNA barcode fishing to obtain mitochondrial DNA fragments from the name-bearing type material of 16 of the 20 available names for members of this subgenus, and integrate these into a genetic dataset consisting of 1305 individuals sampled across Madagascar. By thus assigning the nomina to genetic lineages, we can confidently establish synonyms, revalidate old names, and describe the remaining diversity. We take an integrative approach to our descriptions, drawing together genetics, morphometrics and morphology, and bioacoustics for assignment. We also provide a robust phylogenomic hypothesis for the subgenus, based on 12,951 nuclear-encoded markers (almost 10 million base pairs) for 58 representative samples, sequenced using a hybrid-enrichment bait set for amphibians. Those data suggest a division of the subgenus into eight major clades and shows that morphological species complexes are often paraphyletic or polyphyletic. Lectotypes are designated for Rana betsileana Boulenger, 1882; Rana biporus Boulenger, 1889; Rana curta Boulenger, 1882; Mantidactylus ambohimitombi Boulenger, 1918; Mantidactylus tripunctatus Angel, 1930; and Rana inaudax Peracca, 1893. For several other nomina, previous authors had considered a certain syntype as holotype; this has been seen as lectotype designation by implication, which, however, is ambiguous according to the provisions of the International Code of Zoological Nomenclature. Hence, we validate a previous lectotype designation by implication for Limnodytes ulcerosus Boettger, 1880 by explicitly designating the same individual as lectotype. In one other such case, that of Mantidactylus brauni Ahl, 1929, we deviate from previous authors and designate a different specimen as lectotype. We revalidate Rana inaudax Peracca, 1893 as Mantidactylus inaudax (Peracca, 1893) bona species, and Mantidactylus tripunctatus Angel, 1930 bona species. The identities of three further species (M. ambohimitombi, M. biporus, M. tricinctus) are largely redefined based on new genetic data. By designating the lectotype of Rana aluta (MZUT An725.1) as the neotype of Mantidactylus laevis Angel, 1929 we also stabilize the latter nomen (as junior synonym of M. alutus) whose original type material is lost. Based on DNA sequences of its lectotype, we consider Mantidactylus brauni Ahl, 1929 as junior synonym of M. ulcerosus (rather than M. biporus). We formally name 20 new species and four new subspecies: M. ambohimitombi marefo ssp. nov., M. ambohimitombi miloko ssp. nov., M. mahery sp. nov., M. steinfartzi sp. nov., M. incognitus sp. nov., M. jonasi sp. nov., M. katae sp. nov., M. kortei sp. nov., M. riparius sp. nov., M. fergusoni sp. nov., M. georgei sp. nov., M. jahnarum sp. nov., M. marintsoai sp. nov., M. grubenmanni sp. nov., M. gudrunae sp. nov., M. augustini sp. nov., M. bletzae sp. nov., M. brevirostris sp. nov., M. eulenbergeri sp. nov., M. glosi sp. nov., M. stelliger sp. nov., M. manerana sp. nov., M. manerana fotaka ssp. nov., and M. manerana antsanga ssp. nov. Based on our taxonomic revision, we discuss (i) the importance of definitive assignment of historical names via archival DNA analysis; (ii) the relevance of the subspecies category to name geographic variation within species; (iii) the value of molecular characters in formal species diagnoses in taxa with substantial individual variation of morphology; (iv) the use of phylogenomic approaches for taxonomy, by confirming that some morphologically similar taxa are not each other’s closest relatives, and in several cases belong to entirely different major subclades within Brygoomantis, thus facilitating lineage diagnosis; and (v) the need to interpret genetic distances in a probabilistic framework rather than using fixed thresholds, where higher distances confer a higher likelihood of genetic incompatibilities across the genome and thus completion of speciation.
对不显眼的棕色青蛙的极度喜爱:系统基因组学、档案DNA分析、形态学和生物声学的整合,在马达加斯加的Brygoomantis亚属(Mantidactylus属)中发现了24个新的分类群
Mantidactylus的mantellid蛙属中的Brygoomantis亚属的马达加斯加蛙目前包括14个已描述的物种,主要是棕色的河岸蛙。来自DNA条形码的数据表明,该亚属的多样性被当前的分类学严重低估。我们在这里提供了这个亚属的全面修订。我们使用基于杂交富集的DNA条形码捕鱼,从该亚属成员的20个可用名称中的16个的同名类型材料中获得线粒体DNA片段,并将其整合到由马达加斯加各地1305个样本组成的遗传数据集中。通过将名称分配给遗传谱系,我们可以自信地建立同义词,重新验证旧名称,并描述剩余的多样性。我们采取综合的方法来描述我们的描述,将遗传学,形态计量学和形态学以及生物声学结合起来进行分配。我们还基于58个代表性样本的12951个核编码标记(近1000万个碱基对),对该亚属进行了强大的系统基因组假设,并使用两栖动物的杂交富集诱饵集进行了测序。这些数据表明亚属分为八个主要分支,并表明形态物种复合体通常是副系或多系的。选型被指定为Rana betsileana Boulenger, 1882;Rana biporus Boulenger, 1889;Rana curta Boulenger, 1882;Mantidactylus ambohimitombi Boulenger 1918;三角螳螂,1930;和Rana inaudax Peracca, 1893年。对于其他几种命名,以前的作者认为某一模式为全型;这被认为是一种含蓄的选择型命名,然而,根据《国际动物命名法》的规定,这是不明确的。因此,我们通过对Limnodytes ulcerosus Boettger, 1880年明确指定同一个体为lectotype来验证先前的lectotype指定。在另一个这样的案例中,即1929年的Mantidactylus brauni Ahl,我们偏离了以前的作者,并指定了一个不同的标本作为选型。我们重新验证了1893年Peracca Rana inaudax inaudax (Peracca, 1893)和1930年Mantidactylus tripunctatus Angel的真伪。另外三个物种(M. ambohimitombi, M. biporus, M. tricinctus)的身份根据新的遗传数据在很大程度上被重新定义。通过指定aluta (MZUT An725.1)的选型作为Mantidactylus laevis Angel, 1929的新型,我们也稳定了后者(作为M. alutus的初级同义词),其原始类型材料已经丢失。根据其选型的DNA序列,我们认为Mantidactylus brauni Ahl, 1929是M. ulcerosus(而不是M. biporus)的初级同义种。我们正式命名了20个新种和4个新亚种:M. ambohimitombi marefo ssp。11月,安波希米·米洛科先生。11月,11月,m . mahery sp. m . steinfartzi sp. 11月,m . incognitus sp. 11月,m . jonasi sp. 11月,m . katae sp. 11月,m . kortei sp. 11月,m . riparius sp. 11月,m . fergusoni sp. 11月,m . georgei sp. 11月,m . jahnarum sp. 11月,m . marintsoai sp. 11月,m . grubenmanni sp. 11月,m . gudrunae sp. 11月,m . augustini sp. 11月,m . bletzae sp. 11月,m . brevirostris sp. 11月,m . eulenbergeri sp. 11月,m . glosi sp. 11月,m . stelliger sp. 11月,m . manerana sp. 11月,m . manerana fotaka ssp。11月,和M. manerana antsanga ssp。11 .基于我们的分类学修订,我们讨论了(i)通过档案DNA分析确定历史名称的重要性;(ii)亚种类别与命名种内地理变异的相关性;(3)分子特征在形态个体差异较大的分类群中正式种诊断中的价值;(iv)利用系统基因组学方法进行分类,通过确认一些形态相似的类群不是彼此的近亲,在一些情况下属于Brygoomantis中完全不同的主要亚支,从而促进了谱系诊断;(v)需要在概率框架中解释遗传距离,而不是使用固定的阈值,因为距离越远,整个基因组中遗传不相容的可能性就越大,从而完成物种形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
2
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信