Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation

Ali Moazzam, Hira M. Aslam, N. Tabassum, Emad A. Kuffi
{"title":"Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE\n Transformation","authors":"Ali Moazzam, Hira M. Aslam, N. Tabassum, Emad A. Kuffi","doi":"10.30526/36.2.3251","DOIUrl":null,"url":null,"abstract":"The integral transformations is a complicated function from a function space into\n a simple function in transformed space. Where the function being characterized easily\n and manipulated through integration in transformed function space. The two parametric\n form of SEE transformation and its basic characteristics have been demonstrated in this\n study. The transformed function of a few fundamental functions along with its time\n derivative rule is shown. It has been demonstrated how two parametric SEE\n transformations can be used to solve linear differential equations. This research\n provides a solution to population growth rate equation. One can contrast these outcomes\n with different Laplace type transformations","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.2.3251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations
人口增长率线性微分模型的双参数SEE变换解
积分变换是将一个复杂的函数从函数空间转化为变换空间中的一个简单函数。通过变换后的函数空间中的积分可以很容易地对函数进行表征和操作。本文论证了SEE变换的两参数形式及其基本特征。给出了几种基本函数的变换函数及其时间导数规律。它已经证明了如何两个参数SEE变换可以用来解决线性微分方程。本研究提供了一个人口增长率方程的解。我们可以用不同的拉普拉斯变换来对比这些结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
67
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信