Optimal difference-based variance estimators in time series: A general framework

Kin Wai Chan
{"title":"Optimal difference-based variance estimators in time series: A general framework","authors":"Kin Wai Chan","doi":"10.1214/21-aos2154","DOIUrl":null,"url":null,"abstract":"Variance estimation is important for statistical inference. It becomes nontrivial when observations are masked by serial dependence structures and time-varying mean structures. Existing methods either ignore or sub-optimally handle these nuisance structures. This paper develops a general framework for the estimation of the long-run variance for time series with nonconstant means. The building blocks are difference statistics. The proposed class of estimators is general enough to cover many existing estimators. Necessary and sufficient conditions for consistency are investigated. The first asymptotically optimal estimator is derived. Our proposed estimator is the-oretically proven to be invariant to arbitrary mean structures, which may include trends and a possibly divergent number of discontinuities.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Variance estimation is important for statistical inference. It becomes nontrivial when observations are masked by serial dependence structures and time-varying mean structures. Existing methods either ignore or sub-optimally handle these nuisance structures. This paper develops a general framework for the estimation of the long-run variance for time series with nonconstant means. The building blocks are difference statistics. The proposed class of estimators is general enough to cover many existing estimators. Necessary and sufficient conditions for consistency are investigated. The first asymptotically optimal estimator is derived. Our proposed estimator is the-oretically proven to be invariant to arbitrary mean structures, which may include trends and a possibly divergent number of discontinuities.
时间序列中基于差分的最优方差估计:一般框架
方差估计对统计推断非常重要。当观测值被序列依赖结构和时变平均结构所掩盖时,它就变得不平凡了。现有的方法要么忽略这些讨厌的结构,要么处理得不够理想。本文提出了非常均值时间序列长期方差估计的一般框架。构建模块是差异统计。所提出的估计器类是足够通用的,可以涵盖许多现有的估计器。研究了一致性的充分必要条件。导出了第一个渐近最优估计量。我们提出的估计量在理论上被证明对任意平均结构是不变的,这些平均结构可能包括趋势和可能分散的不连续数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信