Efficient Multi-Layer Obstacle-Avoiding Region-to-Region Rectilinear Steiner Tree Construction*

Run-Yi Wang, C. Pai, Jun-Jie Wang, Hsiang-Ting Wen, Yu-Cheng Pai, Yao-Wen Chang, James CM Li, J. H. Jiang
{"title":"Efficient Multi-Layer Obstacle-Avoiding Region-to-Region Rectilinear Steiner Tree Construction*","authors":"Run-Yi Wang, C. Pai, Jun-Jie Wang, Hsiang-Ting Wen, Yu-Cheng Pai, Yao-Wen Chang, James CM Li, J. H. Jiang","doi":"10.1145/3195970.3196040","DOIUrl":null,"url":null,"abstract":"As Engineering Change Order (ECO) has attracted substantial attention in modern VLSI design, the open net problem, which aims at constructing a shortest obstacle-avoiding path to reconnect the net shapes in an open net, becomes more critical in the ECO stage. This paper addresses a multi-layer obstacle-avoiding region-to-region Steiner minimal tree (SMT) construction problem that connects all net shapes by edges on a layer or vias between layers, and avoids running through any obstacle with a minimal total cost. Existing multi-layer obstacle-avoiding SMT algorithms consider pin-to-pin connections instead of region-to-region ones, which would limit the solution quality due to its lacking region information. In this paper, we present an efficient algorithm based on our new multi-layer obstacle-avoiding region-to-region spanning graph to solve the addressed problem, which guarantees to find an optimal solution for a net connecting two regions on a single layer. Experimental results show that our algorithm outperforms all the participating routers of the 2017 CAD Contest at ICCAD in both solution quality and runtime.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

As Engineering Change Order (ECO) has attracted substantial attention in modern VLSI design, the open net problem, which aims at constructing a shortest obstacle-avoiding path to reconnect the net shapes in an open net, becomes more critical in the ECO stage. This paper addresses a multi-layer obstacle-avoiding region-to-region Steiner minimal tree (SMT) construction problem that connects all net shapes by edges on a layer or vias between layers, and avoids running through any obstacle with a minimal total cost. Existing multi-layer obstacle-avoiding SMT algorithms consider pin-to-pin connections instead of region-to-region ones, which would limit the solution quality due to its lacking region information. In this paper, we present an efficient algorithm based on our new multi-layer obstacle-avoiding region-to-region spanning graph to solve the addressed problem, which guarantees to find an optimal solution for a net connecting two regions on a single layer. Experimental results show that our algorithm outperforms all the participating routers of the 2017 CAD Contest at ICCAD in both solution quality and runtime.
高效多层避障区域到区域的直线斯坦纳树构造*
随着工程变更顺序(ECO)在现代VLSI设计中受到越来越多的关注,开放式网络问题在ECO阶段变得越来越重要,该问题旨在构建一个最短的避障路径来重新连接开放网络中的网络形状。本文研究了一种多层避障区域到区域的斯坦纳最小树(SMT)构造问题,该问题通过层上的边或层间的通孔连接所有网形状,并以最小的总成本避免通过任何障碍物。现有的多层避阻SMT算法考虑的是pin-to-pin连接,而不是region-to-region连接,由于缺乏region信息,会限制解的质量。在本文中,我们提出了一种基于我们的新的多层避障区域到区域生成图的高效算法来解决所述问题,该算法保证了在单层连接两个区域的网络中找到最优解。实验结果表明,该算法在求解质量和运行时间上都优于ICCAD 2017年CAD竞赛的所有参赛路由器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信