Stochastic diffeomorphisms and homogenization of multiple integrals

A. Gloria
{"title":"Stochastic diffeomorphisms and homogenization of multiple integrals","authors":"A. Gloria","doi":"10.1093/AMRX/ABN001","DOIUrl":null,"url":null,"abstract":"In a recent work, Blanc, Le Bris and Lions have introduced the notion of stochastic diffeomorphism together with a variant of stochastic homogenization theory for linear and monotone elliptic operators. Their proofs rely on the ergodic theorem and on the analysis of the associated corrector equation. In the present article, we provide another proof of their results using the formalism of integral functionals. We also extend the analysis to cover the case of quasiconvex integrands.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABN001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In a recent work, Blanc, Le Bris and Lions have introduced the notion of stochastic diffeomorphism together with a variant of stochastic homogenization theory for linear and monotone elliptic operators. Their proofs rely on the ergodic theorem and on the analysis of the associated corrector equation. In the present article, we provide another proof of their results using the formalism of integral functionals. We also extend the analysis to cover the case of quasiconvex integrands.
多重积分的随机微分同态与均匀化
在最近的工作中,Blanc, Le Bris和Lions引入了随机微分同胚的概念以及线性和单调椭圆算子的随机均匀化理论的一个变体。他们的证明依赖于遍历定理和对相关校正方程的分析。在这篇文章中,我们用积分泛函的形式证明了他们的结果。我们也将分析扩展到拟凸积分的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信