Relative Volume Constraints for Single View 3D Reconstruction

Eno Töppe, C. Nieuwenhuis, D. Cremers
{"title":"Relative Volume Constraints for Single View 3D Reconstruction","authors":"Eno Töppe, C. Nieuwenhuis, D. Cremers","doi":"10.1109/CVPR.2013.30","DOIUrl":null,"url":null,"abstract":"We introduce the concept of relative volume constraints in order to account for insufficient information in the reconstruction of 3D objects from a single image. The key idea is to formulate a variational reconstruction approach with shape priors in form of relative depth profiles or volume ratios relating object parts. Such shape priors can easily be derived either from a user sketch or from the object's shading profile in the image. They can handle textured or shadowed object regions by propagating information. We propose a convex relaxation of the constrained optimization problem which can be solved optimally in a few seconds on graphics hardware. In contrast to existing single view reconstruction algorithms, the proposed algorithm provides substantially more flexibility to recover shape details such as self-occlusions, dents and holes, which are not visible in the object silhouette.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"372 1","pages":"177-184"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We introduce the concept of relative volume constraints in order to account for insufficient information in the reconstruction of 3D objects from a single image. The key idea is to formulate a variational reconstruction approach with shape priors in form of relative depth profiles or volume ratios relating object parts. Such shape priors can easily be derived either from a user sketch or from the object's shading profile in the image. They can handle textured or shadowed object regions by propagating information. We propose a convex relaxation of the constrained optimization problem which can be solved optimally in a few seconds on graphics hardware. In contrast to existing single view reconstruction algorithms, the proposed algorithm provides substantially more flexibility to recover shape details such as self-occlusions, dents and holes, which are not visible in the object silhouette.
单视图三维重建的相对体积约束
我们引入了相对体积约束的概念,以解释从单个图像重建3D物体时信息不足的问题。关键思想是制定一个变分重建方法与形状先验的形式相对深度轮廓或体积比相关的物体部分。这样的形状先验可以很容易地从用户草图或从物体的阴影轮廓在图像中得到。它们可以通过传播信息来处理纹理或阴影对象区域。我们提出了一种约束优化问题的凸松弛方法,在图形硬件上可以在几秒钟内得到最优解。与现有的单视图重建算法相比,该算法在恢复物体轮廓中不可见的形状细节(如自遮挡、凹痕和孔洞)方面提供了更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信