The nurse-plant effect under the dislodgement stress of landslides

IF 1.5 4区 农林科学 Q2 FORESTRY
Jian-hong Yang, L. Chang, Kai-Chi Hsu, C. Fan, D. Doley, G. Song, Michael Song, G. Vacchiano
{"title":"The nurse-plant effect under the dislodgement stress of landslides","authors":"Jian-hong Yang, L. Chang, Kai-Chi Hsu, C. Fan, D. Doley, G. Song, Michael Song, G. Vacchiano","doi":"10.3832/ifor4017-015","DOIUrl":null,"url":null,"abstract":"While the mitigating effects of trees on shallow landslide occurrence are well recognised, the impact of landslides on tree community structure and tree-tree interactions have received much less research attention. The structures of tree communities before and after landslides were compared in a 25-ha subtropical forest plot. Tree-tree interactions were examined by analysing the pre-and post-landslide spatial point patterns of large (DBH ≥ 20 cm) and small (1 cm ≤ DBH < 20 cm) tree cohorts. In landslide scarps, 35 (34%) of 104 large trees and 467 (13%) of 3,072 small trees survived. Large (L) and small (S) tree cohorts were paired together for spatial analyses, including pre-landslide ( PL ) (L PL -S PL ), surviving ( S ) (L S -S S ), and missing ( M ) large-small tree paired cohorts (L M - S M ). We randomly selected trees from the pre-landslide tree cohorts to create two virtual paired cohorts, the L 34% -S 13% and L 66% -S 87% paired cohorts, whose population sizes were identical to the field-observed L S -S S and L M -S M paired cohorts respectively, but with random spatial patterns. Post-landslide survival rates of trees increased monotonically with DBH. Large trees dislodged by landslides scarcely reduced small-tree survival. Evidence for this included: (i) the distance from small trees to the nearest large trees of the L M -S M paired cohort did not differ significantly from that of the virtual L 66% -S 87% paired cohort; (ii) survival rates of small trees near L M individuals did not differ significantly from those without large trees nearby. Surviving large trees had positive effects on the survival of small trees, indicated by: (i) the distance from small trees to the nearest large trees of the L S -S S paired cohort was significantly lower than that of the virtual L 34% -S 13% paired cohort; (ii) S S individuals clumped around L S individuals, whereas the virtual L 34% -S 13% spatial relationship was random. Large trees prevent landslide dislodgement of adjacent small trees through the nurse-plant effect. Our study suggests that landslide damage in sloping forests may be reduced simply by constantly maintaining a critical density of large trees.","PeriodicalId":13323,"journal":{"name":"Iforest - Biogeosciences and Forestry","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iforest - Biogeosciences and Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3832/ifor4017-015","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

While the mitigating effects of trees on shallow landslide occurrence are well recognised, the impact of landslides on tree community structure and tree-tree interactions have received much less research attention. The structures of tree communities before and after landslides were compared in a 25-ha subtropical forest plot. Tree-tree interactions were examined by analysing the pre-and post-landslide spatial point patterns of large (DBH ≥ 20 cm) and small (1 cm ≤ DBH < 20 cm) tree cohorts. In landslide scarps, 35 (34%) of 104 large trees and 467 (13%) of 3,072 small trees survived. Large (L) and small (S) tree cohorts were paired together for spatial analyses, including pre-landslide ( PL ) (L PL -S PL ), surviving ( S ) (L S -S S ), and missing ( M ) large-small tree paired cohorts (L M - S M ). We randomly selected trees from the pre-landslide tree cohorts to create two virtual paired cohorts, the L 34% -S 13% and L 66% -S 87% paired cohorts, whose population sizes were identical to the field-observed L S -S S and L M -S M paired cohorts respectively, but with random spatial patterns. Post-landslide survival rates of trees increased monotonically with DBH. Large trees dislodged by landslides scarcely reduced small-tree survival. Evidence for this included: (i) the distance from small trees to the nearest large trees of the L M -S M paired cohort did not differ significantly from that of the virtual L 66% -S 87% paired cohort; (ii) survival rates of small trees near L M individuals did not differ significantly from those without large trees nearby. Surviving large trees had positive effects on the survival of small trees, indicated by: (i) the distance from small trees to the nearest large trees of the L S -S S paired cohort was significantly lower than that of the virtual L 34% -S 13% paired cohort; (ii) S S individuals clumped around L S individuals, whereas the virtual L 34% -S 13% spatial relationship was random. Large trees prevent landslide dislodgement of adjacent small trees through the nurse-plant effect. Our study suggests that landslide damage in sloping forests may be reduced simply by constantly maintaining a critical density of large trees.
滑坡位移应力下的护植效应
虽然树木对浅层滑坡的缓解作用已得到充分认识,但滑坡对树木群落结构和树-树相互作用的影响却很少得到研究关注。对25 ha亚热带森林滑坡前后树木群落结构进行了比较。通过分析滑坡前和滑坡后大(胸径≥20 cm)和小(1 cm≤胸径< 20 cm)树群的空间点格局,研究了树与树之间的相互作用。在滑坡坡面,104棵大树中有35棵(34%)存活,3072棵小树中有467棵(13%)存活。将大(L)和小(S)树队列配对在一起进行空间分析,包括滑坡前(PL) (L PL -S PL)、幸存(S) (L S -S S)和缺失(M)大小树木配对队列(L M -S M)。我们从滑坡前的树木队列中随机选择树木,创建了两个虚拟成对队列,l34% - s13%和l66% - s87%成对队列,其种群大小分别与现场观察到的L S -S S和L M -S M成对队列相同,但具有随机的空间模式。滑坡后树木成活率随胸径单调增加。被山体滑坡移走的大树几乎没有减少小树的存活。这方面的证据包括:(i) L M -S M配对队列的小树到最近的大树的距离与虚拟L 66% -S 87%配对队列没有显著差异;(ii)靠近lm个体的小树存活率与附近没有大树的存活率无显著差异。大树成活对小树成活有正向影响,表现为:(1)L S -S -S配对组小树到最近大树的距离显著低于虚拟L 34% -S - 13%配对组;(ii) S -S个体聚集在L -S个体周围,而虚拟L - 34% -S - 13%的空间关系是随机的。大树通过护生植物的作用防止相邻小树的滑坡移动。我们的研究表明,只要持续保持一个临界的大树密度,就可以减少坡地森林的滑坡损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
54
审稿时长
6 months
期刊介绍: The journal encompasses a broad range of research aspects concerning forest science: forest ecology, biodiversity/genetics and ecophysiology, silviculture, forest inventory and planning, forest protection and monitoring, forest harvesting, landscape ecology, forest history, wood technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信