Are Stock-Market Anomalies Anomalous After All?

George Chalamandaris, Kuntara Pukthuanthong, Nikolas Topaloglou
{"title":"Are Stock-Market Anomalies Anomalous After All?","authors":"George Chalamandaris, Kuntara Pukthuanthong, Nikolas Topaloglou","doi":"10.2139/ssrn.3752177","DOIUrl":null,"url":null,"abstract":"We propose a stochastic spanning to evaluate whether anomalies are genuine under factor-model framework. Our approach is nonparametric and does not rely on any assumption of return distribution and investor risk preferences. It depends on the whole distribution of returns, rather than only on the first two moments. Of the anomalies we consider, only a few expand the opportunity set of the risk-averter and have real economic content. Our approach is consistent in identifying genuine anomalies in and out of samples. This is in contrast to mean-variance (MV) spanning tests where anomalies identified in-sample, not out-of-sample.","PeriodicalId":13701,"journal":{"name":"International Corporate Finance eJournal","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Corporate Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3752177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a stochastic spanning to evaluate whether anomalies are genuine under factor-model framework. Our approach is nonparametric and does not rely on any assumption of return distribution and investor risk preferences. It depends on the whole distribution of returns, rather than only on the first two moments. Of the anomalies we consider, only a few expand the opportunity set of the risk-averter and have real economic content. Our approach is consistent in identifying genuine anomalies in and out of samples. This is in contrast to mean-variance (MV) spanning tests where anomalies identified in-sample, not out-of-sample.
股市异常到底反常吗?
我们提出了一个随机跨越来评估在因子模型框架下异常是否真实。我们的方法是非参数的,不依赖于任何回报分布和投资者风险偏好的假设。它取决于收益的整体分布,而不仅仅是前两个时刻。在我们考虑的异常中,只有少数扩展了风险规避者的机会集,并且具有实际的经济内容。我们的方法在识别样本内外的真实异常方面是一致的。这与均值方差(MV)跨越测试相反,后者识别样本内异常,而不是样本外异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信