{"title":"Can pseudocomplementary peptide nucleic acid nucleases (pcPNANs) be a new tool for genetic engineering","authors":"Penghui Shi","doi":"10.7287/PEERJ.PREPRINTS.229V1","DOIUrl":null,"url":null,"abstract":"Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. Although these technologies have begun to enable targeted genome modifications, there remains a need for new technologies that are scalable, affordable, and easy to engineer. In this paper, we propose a new tool for genetic engineering, the pseudocomplementary peptide nucleic acid nucleases (pcPNANs), which are composed of a pseudocomplementary PNA (pcPNA) specific for a DNA target sequence, a FokI nuclease cleavage domain and a nuclear localization signal. pcPNANs may induce targeted DNA double-strand breaks that activate DNA damage response pathways and enable custom alterations. Their cleavage-site is determined by simple Watson-Crick rule, and thus pcPNANs for aimed cleavage of genomes can be straightforwardly designed and synthesized without any selection procedure. Accordingly, the cleavage-site and site-specificity are freely chosen by changing the sequences and the lengths of pcPNA strands. We believe that the potentiality of pcPNAN as a new tool for genetic engineering will be confirmed in the future.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/PEERJ.PREPRINTS.229V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. Although these technologies have begun to enable targeted genome modifications, there remains a need for new technologies that are scalable, affordable, and easy to engineer. In this paper, we propose a new tool for genetic engineering, the pseudocomplementary peptide nucleic acid nucleases (pcPNANs), which are composed of a pseudocomplementary PNA (pcPNA) specific for a DNA target sequence, a FokI nuclease cleavage domain and a nuclear localization signal. pcPNANs may induce targeted DNA double-strand breaks that activate DNA damage response pathways and enable custom alterations. Their cleavage-site is determined by simple Watson-Crick rule, and thus pcPNANs for aimed cleavage of genomes can be straightforwardly designed and synthesized without any selection procedure. Accordingly, the cleavage-site and site-specificity are freely chosen by changing the sequences and the lengths of pcPNA strands. We believe that the potentiality of pcPNAN as a new tool for genetic engineering will be confirmed in the future.