Numerical solution of Cauchy singular integral equations of the first kind with index V=1

Q4 Mathematics
I. Esuabana, O. Ntekim, S. E. Ekoro, U. Abasiekwere, K. F. Mesagan
{"title":"Numerical solution of Cauchy singular integral equations of the first kind with index V=1","authors":"I. Esuabana, O. Ntekim, S. E. Ekoro, U. Abasiekwere, K. F. Mesagan","doi":"10.28919/jmcs/6635","DOIUrl":null,"url":null,"abstract":"A method based on Gauss-Chebyshev quadrature and barycentric interpolation is used to obtain the numerical solution of Cauchy singular integral equations of the first kind with index equal to 1 at non-Chebyshev nodes. The unknown function in the equation is first expressed as a product of an appropriate weight function and a truncated weighted series of Chebyshev polynomial of the first kind. Some properties of Chebyshev polynomials are then used to reduce the equation to a system of linear equations. On solving the linear system, the numerical solution of the Cauchy singular integral equation is obtained at Chebyshev nodes, after which barycentric interpolation is used to obtain the numerical solution at non-Chebyshev nodes. When the numerical solution obtained is compared with the analytical solution and the absolute error computed, the results are found to be satisfactory.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/6635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A method based on Gauss-Chebyshev quadrature and barycentric interpolation is used to obtain the numerical solution of Cauchy singular integral equations of the first kind with index equal to 1 at non-Chebyshev nodes. The unknown function in the equation is first expressed as a product of an appropriate weight function and a truncated weighted series of Chebyshev polynomial of the first kind. Some properties of Chebyshev polynomials are then used to reduce the equation to a system of linear equations. On solving the linear system, the numerical solution of the Cauchy singular integral equation is obtained at Chebyshev nodes, after which barycentric interpolation is used to obtain the numerical solution at non-Chebyshev nodes. When the numerical solution obtained is compared with the analytical solution and the absolute error computed, the results are found to be satisfactory.
指标V=1的第一类柯西奇异积分方程的数值解
利用高斯-切比雪夫正交和质心插值的方法,得到了指数为1的第一类柯西奇异积分方程在非切比雪夫节点处的数值解。首先将方程中的未知函数表示为适当的权函数与第一类切比雪夫多项式的截断权级数的乘积。然后利用切比雪夫多项式的一些性质将方程简化为线性方程组。在求解线性系统时,首先得到柯西奇异积分方程在切比雪夫节点处的数值解,然后利用重心插值法得到非切比雪夫节点处的数值解。将数值解与解析解及计算的绝对误差进行比较,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信