B. Bhattacharjee, P. Chakraborti, Kishan Choudhuri
{"title":"Theoretical investigation of porous hydrostatic journal bearing under micropolar fluid lubrication","authors":"B. Bhattacharjee, P. Chakraborti, Kishan Choudhuri","doi":"10.1177/2397791420905236","DOIUrl":null,"url":null,"abstract":"The features of micropolar fluid (a non-Newtonian fluid)–lubricated short single-layered porous hydrostatic journal bearing are analyzed theoretically by an iterative method. To investigate hydrostatic journal bearing characteristics, a modified Reynolds equation in the case of micropolar fluid is derived and solved numerically. The obtained results in this work are validated by comparing the same with previously published results with Newtonian and non-Newtonian lubricants in the form of design charts. The static stiffness and load-carrying capacity of the investigated bearing are 80% and 75% higher than conventional hydrostatic bearings. The porous hydrostatic journal bearing exhibits more economical performance as it requires 40% low flow rate and low pump power, and it generates 50% less heat in contrast with other hydrostatic bearings.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"60 1","pages":"11 - 18"},"PeriodicalIF":4.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420905236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 10
Abstract
The features of micropolar fluid (a non-Newtonian fluid)–lubricated short single-layered porous hydrostatic journal bearing are analyzed theoretically by an iterative method. To investigate hydrostatic journal bearing characteristics, a modified Reynolds equation in the case of micropolar fluid is derived and solved numerically. The obtained results in this work are validated by comparing the same with previously published results with Newtonian and non-Newtonian lubricants in the form of design charts. The static stiffness and load-carrying capacity of the investigated bearing are 80% and 75% higher than conventional hydrostatic bearings. The porous hydrostatic journal bearing exhibits more economical performance as it requires 40% low flow rate and low pump power, and it generates 50% less heat in contrast with other hydrostatic bearings.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.