A stability criterion for fractional-order systems with α-order in frequency domain: The 1 < α < 2 case

Zhe Gao, X. Liao, Bo Shan, Hong Huang
{"title":"A stability criterion for fractional-order systems with α-order in frequency domain: The 1 < α < 2 case","authors":"Zhe Gao, X. Liao, Bo Shan, Hong Huang","doi":"10.1109/ASCC.2013.6606156","DOIUrl":null,"url":null,"abstract":"This paper proposes a stability criterion for linear fractional-order systems with the commensurate order α satisfying 1 <; α <; 2. The angle increment of the characteristic function in a linear fractional-order system is investigated, and the stability condition with respect to the angle increment is presented in the frequency domain. By this condition, we present a stability criterion to verify the stability of a linear fractional-order system according to the arrangement of the positive real solutions of two equations with respect to the coefficients of the characteristic function and the highest order. Finally, a numerical example is given to demonstrate the effectiveness of the proposed stability criterion.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a stability criterion for linear fractional-order systems with the commensurate order α satisfying 1 <; α <; 2. The angle increment of the characteristic function in a linear fractional-order system is investigated, and the stability condition with respect to the angle increment is presented in the frequency domain. By this condition, we present a stability criterion to verify the stability of a linear fractional-order system according to the arrangement of the positive real solutions of two equations with respect to the coefficients of the characteristic function and the highest order. Finally, a numerical example is given to demonstrate the effectiveness of the proposed stability criterion.
频率域α-阶分数阶系统的稳定性判据:1 < α < 2情况
给出了相应阶数α满足1 <的线性分数阶系统的稳定性判据;α<;2. 研究了线性分数阶系统中特征函数的角度增量问题,给出了系统在频域上关于角度增量的稳定性条件。在此条件下,根据两个方程关于特征函数系数和最高阶系数的正实解的排列,给出了验证线性分数阶系统稳定性的稳定性判据。最后通过数值算例验证了所提稳定性判据的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信