Long-term natural gas peak demand forecasting in Tunisia Using machine learning

Sami Ben Brahim, M. Slimane
{"title":"Long-term natural gas peak demand forecasting in Tunisia Using machine learning","authors":"Sami Ben Brahim, M. Slimane","doi":"10.1109/IC_ASET53395.2022.9765941","DOIUrl":null,"url":null,"abstract":"Natural gas peak demand forecasting is crucial for efficient network infrastructure spending and stock planning. Herein, long-term forecasting is studied, using data of the Tunisian Company of Electricity and Gas (STEG) as case study. Gas peak flow data preprocessing is elaborated as preliminary step. Ridge regressor, support vector regressor (SVR) and K-nearest neighbors (K-NN) are implemented to make long-term forecasting with different resolutions (daily, monthly). Based on the best performing base models, two types of ensemble models are implemented: simple average and weighted average. The study provides important results to decision-makers in order to optimize the energy policies.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"56 1","pages":"222-227"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET53395.2022.9765941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural gas peak demand forecasting is crucial for efficient network infrastructure spending and stock planning. Herein, long-term forecasting is studied, using data of the Tunisian Company of Electricity and Gas (STEG) as case study. Gas peak flow data preprocessing is elaborated as preliminary step. Ridge regressor, support vector regressor (SVR) and K-nearest neighbors (K-NN) are implemented to make long-term forecasting with different resolutions (daily, monthly). Based on the best performing base models, two types of ensemble models are implemented: simple average and weighted average. The study provides important results to decision-makers in order to optimize the energy policies.
利用机器学习预测突尼斯天然气长期峰值需求
天然气峰值需求预测对于有效的网络基础设施支出和库存规划至关重要。本文以突尼斯电力和天然气公司(STEG)的数据为例,研究了长期预测。论述了气体峰值流量数据预处理的初步步骤。采用岭回归、支持向量回归(SVR)和k -近邻回归(K-NN)进行不同分辨率(日、月)的长期预测。基于性能最好的基本模型,实现了两种类型的集成模型:简单平均和加权平均。研究结果为决策者优化能源政策提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信