An application of elementary real analysis to a metabelian group admitting integral polynomial exponents

IF 0.1 Q4 MATHEMATICS
A. Gaglione, S. Lipschutz, D. Spellman
{"title":"An application of elementary real analysis to a metabelian group admitting integral polynomial exponents","authors":"A. Gaglione, S. Lipschutz, D. Spellman","doi":"10.1515/gcc-2015-0004","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a free metabelian group of rank r = 2. We introduce a faithful 2×2 real matrix representation of G and extend this to a group G ℤ[θ] $G^{\\mathbb {Z}[\\theta ]}$ of 2×2 matrices admitting exponents from the integral polynomial ring ℤ[θ]$\\mathbb {Z}[\\theta ]$ . Identifying G with its matrix representation, we show that given γ(θ)∈G ℤ[θ] $\\gamma (\\theta )\\in G^{\\mathbb {Z}[\\theta ]}$ and n∈ℤ$n\\in \\mathbb {Z}$ , one has that lim θ→n γ(θ)$\\lim _{\\theta \\rightarrow n}\\gamma (\\theta )$ exists and lies in G. Furthermore, the maps γ(θ)↦lim θ→n γ(θ)$\\gamma (\\theta )\\mapsto \\lim _{\\theta \\rightarrow n}\\gamma (\\theta )$ form a discriminating family of group retractions G ℤ[θ] →G$G^{\\mathbb {Z}[\\theta ]}\\rightarrow G$ as n varies over ℤ. Although not explicitly carried out in this manuscript, it is clear that similar results hold for any countable rank r.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"13 1","pages":"59 - 68"},"PeriodicalIF":0.1000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2015-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let G be a free metabelian group of rank r = 2. We introduce a faithful 2×2 real matrix representation of G and extend this to a group G ℤ[θ] $G^{\mathbb {Z}[\theta ]}$ of 2×2 matrices admitting exponents from the integral polynomial ring ℤ[θ]$\mathbb {Z}[\theta ]$ . Identifying G with its matrix representation, we show that given γ(θ)∈G ℤ[θ] $\gamma (\theta )\in G^{\mathbb {Z}[\theta ]}$ and n∈ℤ$n\in \mathbb {Z}$ , one has that lim θ→n γ(θ)$\lim _{\theta \rightarrow n}\gamma (\theta )$ exists and lies in G. Furthermore, the maps γ(θ)↦lim θ→n γ(θ)$\gamma (\theta )\mapsto \lim _{\theta \rightarrow n}\gamma (\theta )$ form a discriminating family of group retractions G ℤ[θ] →G$G^{\mathbb {Z}[\theta ]}\rightarrow G$ as n varies over ℤ. Although not explicitly carried out in this manuscript, it is clear that similar results hold for any countable rank r.
初等实数分析在含整多项式指数的亚元群中的应用
摘要设G为秩为r = 2的自由亚元群。我们引入了G的一个可靠的2×2实矩阵表示,并将其推广到包含整数多项式环(0 [θ] $\mathbb {Z}[\theta ]$)指数的2×2矩阵群G G [θ] $G^{\mathbb {Z}[\theta ]}$。用矩阵表示G,证明了给定γ(θ)∈G G [θ] $\gamma (\theta )\in G^{\mathbb {Z}[\theta ]}$和n∈n $n\in \mathbb {Z}$,可以证明lim θ→n γ(θ) $\lim _{\theta \rightarrow n}\gamma (\theta )$存在并且在G中。并且,当n在n上变化时,映射γ(θ)∑lim θ→n γ(θ) $\gamma (\theta )\mapsto \lim _{\theta \rightarrow n}\gamma (\theta )$形成了一个群缩回的判别族G G [θ]→G $G^{\mathbb {Z}[\theta ]}\rightarrow G$。虽然在本文中没有明确地进行,但很明显,类似的结果适用于任何可数秩r。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信