The Excluded Minors for Three Classes of 2-Polymatroids Having Special Types of Natural Matroids

Joseph E. Bonin, Kevin Long
{"title":"The Excluded Minors for Three Classes of 2-Polymatroids Having Special Types of Natural Matroids","authors":"Joseph E. Bonin, Kevin Long","doi":"10.1137/22m1521134","DOIUrl":null,"url":null,"abstract":"If $\\mathcal{C}$ is a minor-closed class of matroids, the class $\\mathcal{C}'$ of integer polymatroids whose natural matroids are in $\\mathcal{C}$ is also minor closed, as is the class $\\mathcal{C}'_k$ of $k$-polymatroids in $\\mathcal{C}'$. We find the excluded minors for $\\mathcal{C}'_2$ when $\\mathcal{C}$ is (i) the class of binary matroids, (ii) the class of matroids with no $M(K_4)$-minor, and, combining those, (iii) the class of matroids whose connected components are cycle matroids of series-parallel networks. In each case the class $\\mathcal{C}$ has finitely many excluded minors, but that is true of $\\mathcal{C}'_2$ only in case (ii). We also introduce the $k$-natural matroid, a variant of the natural matroid for a $k$-polymatroid, and use it to prove that these classes of 2-polymatroids are closed under 2-duality.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"15 1","pages":"1715-1737"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1521134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

If $\mathcal{C}$ is a minor-closed class of matroids, the class $\mathcal{C}'$ of integer polymatroids whose natural matroids are in $\mathcal{C}$ is also minor closed, as is the class $\mathcal{C}'_k$ of $k$-polymatroids in $\mathcal{C}'$. We find the excluded minors for $\mathcal{C}'_2$ when $\mathcal{C}$ is (i) the class of binary matroids, (ii) the class of matroids with no $M(K_4)$-minor, and, combining those, (iii) the class of matroids whose connected components are cycle matroids of series-parallel networks. In each case the class $\mathcal{C}$ has finitely many excluded minors, but that is true of $\mathcal{C}'_2$ only in case (ii). We also introduce the $k$-natural matroid, a variant of the natural matroid for a $k$-polymatroid, and use it to prove that these classes of 2-polymatroids are closed under 2-duality.
具有特殊类型天然拟阵的3类2-多拟阵的排除子类
如果$\mathcal{C}$是矩阵的小闭类,则其天然矩阵在$\mathcal{C}$中的整数多边形的类$\mathcal{C}'$也是小闭类,$\mathcal{C}'$中的$k$-polymatroids的类$\mathcal{C}'$也是小闭类。当$\mathcal{C}$是(i)二元拟阵类,(ii)没有$M(K_4)$-次阵的拟阵类,以及结合它们,(iii)连接分量为串并联网络的环拟阵的拟阵类,我们得到$\mathcal{C}'_2$的排除次阵。在每一种情况下,$\mathcal{C}$类都有有限多的排除子阵,但$\mathcal{C}'_2$只有在第(ii)种情况下才成立。我们还引入$k$-自然阵,即$k$-多阵的自然阵的一个变体,并用它来证明这些2-多阵在2对偶下是闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信