Exact solutions to the Navier–Stokes equations for describing inhomogeneous isobaric vertical vortex fluid flows in regions with permeable boundaries

L. Goruleva, E. Prosviryakov
{"title":"Exact solutions to the Navier–Stokes equations for describing inhomogeneous isobaric vertical vortex fluid flows in regions with permeable boundaries","authors":"L. Goruleva, E. Prosviryakov","doi":"10.17804/2410-9908.2023.1.041-053","DOIUrl":null,"url":null,"abstract":"A family of exact solutions to the Navier–Stokes equations is constructed to describe nonuniform two-dimensional fluid motions. The superposition of the main unidirectional flow with the secondary flow is considered. The secondary flow is determined by suction or injection through permeable boundaries. This class of exact solutions is obtained by multiplicative and additive separation of variables. The flow of a viscous incompressible fluid is described by a polynomial of the horizontal (longitudinal) coordinate. The polynomial coefficients are functions of the vertical (transverse) coordinate and time. They are determined by a chain of homogeneous and inhomogeneous parabolic partial differential equations with a convective term. In the case of a steady flow, it is described by a system of ordinary differential equations with constant coefficients. An algorithm for integrating a system of ordinary differential equations for studying the steady motion of a viscous fluid is presented. In this case, all the functions defining the velocity are quasipolynomials since the system of ordinary differential equations has an Euler-form exact solution.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2023.1.041-053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A family of exact solutions to the Navier–Stokes equations is constructed to describe nonuniform two-dimensional fluid motions. The superposition of the main unidirectional flow with the secondary flow is considered. The secondary flow is determined by suction or injection through permeable boundaries. This class of exact solutions is obtained by multiplicative and additive separation of variables. The flow of a viscous incompressible fluid is described by a polynomial of the horizontal (longitudinal) coordinate. The polynomial coefficients are functions of the vertical (transverse) coordinate and time. They are determined by a chain of homogeneous and inhomogeneous parabolic partial differential equations with a convective term. In the case of a steady flow, it is described by a system of ordinary differential equations with constant coefficients. An algorithm for integrating a system of ordinary differential equations for studying the steady motion of a viscous fluid is presented. In this case, all the functions defining the velocity are quasipolynomials since the system of ordinary differential equations has an Euler-form exact solution.
描述具有可渗透边界区域内非均匀等压垂直涡旋流体流动的Navier-Stokes方程的精确解
构造了Navier-Stokes方程的一组精确解来描述非均匀二维流体运动。考虑了主单向流与二次流的叠加。二次流是通过可渗透边界的吸入或注入来决定的。这类精确解是通过变量的乘性分离和加性分离得到的。粘性不可压缩流体的流动用水平(纵向)坐标的多项式来描述。多项式系数是垂直(横向)坐标和时间的函数。它们由一串具有对流项的齐次和非齐次抛物型偏微分方程决定。在定常流动的情况下,用常系数常微分方程组来描述。提出了一种研究粘性流体稳态运动的常微分方程组的积分算法。在这种情况下,所有定义速度的函数都是准多项式,因为常微分方程组有欧拉形式的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信