{"title":"Well-posedness and optimal control for a viscous Cahn–Hilliard–Oono system with dynamic boundary conditions","authors":"G. Gilardi, E. Rocca, A. Signori","doi":"10.3934/dcdss.2023127","DOIUrl":null,"url":null,"abstract":"In this paper we consider a nonlinear system of PDEs coupling the viscous Cahn-Hilliard-Oono equation with dynamic boundary conditions enjoying a similar structure on the boundary. After proving well-posedness of the corresponding initial boundary value problem, we study an associated optimal control problem related to a tracking-type cost functional, proving first-order necessary conditions of optimality. The controls enter the system in the form of a distributed and a boundary source. We can account for general potentials in the bulk and in the boundary part under the common assumption that the boundary potential is dominant with respect to the bulk one. For example, the regular quartic potential as well as the logarithmic potential can be considered in our analysis.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcdss.2023127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider a nonlinear system of PDEs coupling the viscous Cahn-Hilliard-Oono equation with dynamic boundary conditions enjoying a similar structure on the boundary. After proving well-posedness of the corresponding initial boundary value problem, we study an associated optimal control problem related to a tracking-type cost functional, proving first-order necessary conditions of optimality. The controls enter the system in the form of a distributed and a boundary source. We can account for general potentials in the bulk and in the boundary part under the common assumption that the boundary potential is dominant with respect to the bulk one. For example, the regular quartic potential as well as the logarithmic potential can be considered in our analysis.
期刊介绍:
Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.