Links in surfaces and Laplacian modules

D. Silver, Susan G. Williams
{"title":"Links in surfaces and Laplacian modules","authors":"D. Silver, Susan G. Williams","doi":"10.1142/s0218216520500571","DOIUrl":null,"url":null,"abstract":"Laplacian matrices of weighted graphs in surfaces $S$ are used to define module and polynomial invariants of $Z/2$-homologically trivial links in $S \\times [0,1]$. Information about virtual genus is obtained.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218216520500571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Laplacian matrices of weighted graphs in surfaces $S$ are used to define module and polynomial invariants of $Z/2$-homologically trivial links in $S \times [0,1]$. Information about virtual genus is obtained.
曲面和拉普拉斯模块中的链接
利用曲面$S$上加权图的拉普拉斯矩阵,定义$S \乘[0,1]$上$Z/2$-同调平凡连杆的模不变量和多项式不变量。获取虚拟属信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信