{"title":"Mechanical properties of fine-grained dual phase low-carbon steels based on dynamic transformation","authors":"Haiwei Xu , Wangyue Yang , Zuqing Sun","doi":"10.1016/S1005-8850(08)60104-8","DOIUrl":null,"url":null,"abstract":"<div><p>The fine grained dual phase (FG-DP) steel with ferrite grains of 2-4.5 μm and martensite islands smaller than 3 μm was obtained through the mechanism of deformation-enhanced ferrite transformation (DEFT). Mechanical properties of the steel were tested at room temperature. The results indicated that with a similar volume fraction of martensite (about 20vol%), FG-DP steel exhibited a superior combination of higher strength and more rapid strain hardening at low strains compared with the coarse-grained dual phase (CG-DP) steel obtained by critical annealing. The combination of higher strength, large elongation, and more rapid strain hardening of FG-DP steel can be attributed to the fine ferrite grain and finely dispersed martensite islands. In addition, the uniformly distributed martensite islands in FG-DP steel have smaller interspacing compared with that of CG-DP steel. So, at the initial plastic deformation stage, the plastic deformation of ferrite was restrained and more pronounced load was transferred from ferrite to martensite. The plastic deformation of martensite in FG-DP steel started earlier.</p></div>","PeriodicalId":100851,"journal":{"name":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","volume":"15 5","pages":"Pages 556-560"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60104-8","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005885008601048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The fine grained dual phase (FG-DP) steel with ferrite grains of 2-4.5 μm and martensite islands smaller than 3 μm was obtained through the mechanism of deformation-enhanced ferrite transformation (DEFT). Mechanical properties of the steel were tested at room temperature. The results indicated that with a similar volume fraction of martensite (about 20vol%), FG-DP steel exhibited a superior combination of higher strength and more rapid strain hardening at low strains compared with the coarse-grained dual phase (CG-DP) steel obtained by critical annealing. The combination of higher strength, large elongation, and more rapid strain hardening of FG-DP steel can be attributed to the fine ferrite grain and finely dispersed martensite islands. In addition, the uniformly distributed martensite islands in FG-DP steel have smaller interspacing compared with that of CG-DP steel. So, at the initial plastic deformation stage, the plastic deformation of ferrite was restrained and more pronounced load was transferred from ferrite to martensite. The plastic deformation of martensite in FG-DP steel started earlier.