{"title":"A Time Delay Prediction Model of 5G Users Based on the BiLSTM Neural Network Optimized by APSO-SD","authors":"Xiaozheng Dang, Di He, Cong Xie","doi":"10.1155/2023/4137614","DOIUrl":null,"url":null,"abstract":"To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"8 1","pages":"4137614:1-4137614:20"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4137614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.