Efficient eigenvalue counts for tree-like networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Grover E. C. Guzman, P. Stadler, André Fujita
{"title":"Efficient eigenvalue counts for tree-like networks","authors":"Grover E. C. Guzman, P. Stadler, André Fujita","doi":"10.1093/comnet/cnac040","DOIUrl":null,"url":null,"abstract":"\n Estimating the number of eigenvalues $\\mu_{[a,b]}$ of a network’s adjacency matrix in a given interval $[a,b]$ is essential in several fields. The straightforward approach consists of calculating all the eigenvalues in $O(n^3)$ (where $n$ is the number of nodes in the network) and then counting the ones that belong to the interval $[a,b]$. Another approach is to use Sylvester’s law of inertia, which also requires $O(n^3)$. Although both methods provide the exact number of eigenvalues in $[a,b]$, their application for large networks is computationally infeasible. Sometimes, an approximation of $\\mu_{[a,b]}$ is enough. In this case, Chebyshev’s method approximates $\\mu_{[a,b]}$ in $O(|E|)$ (where $|E|$ is the number of edges). This study presents two alternatives to compute $\\mu_{[a,b]}$ for locally tree-like networks: edge- and degree-based algorithms. The former presented a better accuracy than Chebyshev’s method. It runs in $O(d|E|)$, where $d$ is the number of iterations. The latter presented slightly lower accuracy but ran linearly ($O(n)$).","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the number of eigenvalues $\mu_{[a,b]}$ of a network’s adjacency matrix in a given interval $[a,b]$ is essential in several fields. The straightforward approach consists of calculating all the eigenvalues in $O(n^3)$ (where $n$ is the number of nodes in the network) and then counting the ones that belong to the interval $[a,b]$. Another approach is to use Sylvester’s law of inertia, which also requires $O(n^3)$. Although both methods provide the exact number of eigenvalues in $[a,b]$, their application for large networks is computationally infeasible. Sometimes, an approximation of $\mu_{[a,b]}$ is enough. In this case, Chebyshev’s method approximates $\mu_{[a,b]}$ in $O(|E|)$ (where $|E|$ is the number of edges). This study presents two alternatives to compute $\mu_{[a,b]}$ for locally tree-like networks: edge- and degree-based algorithms. The former presented a better accuracy than Chebyshev’s method. It runs in $O(d|E|)$, where $d$ is the number of iterations. The latter presented slightly lower accuracy but ran linearly ($O(n)$).
树状网络的有效特征值计数
在给定区间$[a,b]$中估计网络邻接矩阵的特征值$\mu_{[a,b]}$的个数在几个领域是必不可少的。直接的方法包括计算$O(n^3)$(其中$n$是网络中的节点数)中的所有特征值,然后计算属于区间$[a,b]$的特征值。另一种方法是使用Sylvester惯性定律,它也需要$O(n^3)$。尽管这两种方法都提供了$[a,b]$中特征值的确切数量,但它们在大型网络中的应用在计算上是不可行的。有时,近似于$\mu_{[a,b]}$就足够了。在这种情况下,Chebyshev的方法在$O(|E|)$(其中$|E|$是边的数量)$ \mu_{[a,b]}$中逼近$\mu_{[a,b]}$。本研究提出了计算局部树状网络$\mu_{[a,b]}$的两种替代方法:基于边缘和基于度的算法。前者比切比雪夫的方法更精确。它在$O(d|E|)$中运行,其中$d$是迭代的次数。后者的准确率略低,但线性运行($O(n)$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信