{"title":"Coordination-Free Byzantine Replication with Minimal Communication Costs","authors":"Jelle Hellings, Mohammad Sadoghi","doi":"10.4230/LIPIcs.ICDT.2020.17","DOIUrl":null,"url":null,"abstract":"State-of-the-art fault-tolerant and federated data management systems rely on fully-replicated designs in which all participants have equivalent roles. Consequently, these systems have only limited scalability and are ill-suited for high-performance data management. As an alternative, we propose a hierarchical design in which a Byzantine cluster manages data, while an arbitrary number of learners can reliable learn these updates and use the corresponding data. To realize our design, we propose the delayed-replication algorithm, an efficient solution to the Byzantine learner problem that is central to our design. The delayed-replication algorithm is coordination-free, scalable, and has minimal communication cost for all participants involved. In doing so, the delayed-broadcast algorithm opens the door to new high-performance fault-tolerant and federated data management systems. To illustrate this, we show that the delayed-replication algorithm is not only useful to support specialized learners, but can also be used to reduce the overall communication cost of permissioned blockchains and to improve their storage scalability.","PeriodicalId":90482,"journal":{"name":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","volume":"56 1","pages":"17:1-17:20"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ICDT.2020.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
State-of-the-art fault-tolerant and federated data management systems rely on fully-replicated designs in which all participants have equivalent roles. Consequently, these systems have only limited scalability and are ill-suited for high-performance data management. As an alternative, we propose a hierarchical design in which a Byzantine cluster manages data, while an arbitrary number of learners can reliable learn these updates and use the corresponding data. To realize our design, we propose the delayed-replication algorithm, an efficient solution to the Byzantine learner problem that is central to our design. The delayed-replication algorithm is coordination-free, scalable, and has minimal communication cost for all participants involved. In doing so, the delayed-broadcast algorithm opens the door to new high-performance fault-tolerant and federated data management systems. To illustrate this, we show that the delayed-replication algorithm is not only useful to support specialized learners, but can also be used to reduce the overall communication cost of permissioned blockchains and to improve their storage scalability.