{"title":"Combining predictions for accurate recommender systems","authors":"Michael Jahrer, Andreas Töscher, R. Legenstein","doi":"10.1145/1835804.1835893","DOIUrl":null,"url":null,"abstract":"We analyze the application of ensemble learning to recommender systems on the Netflix Prize dataset. For our analysis we use a set of diverse state-of-the-art collaborative filtering (CF) algorithms, which include: SVD, Neighborhood Based Approaches, Restricted Boltzmann Machine, Asymmetric Factor Model and Global Effects. We show that linearly combining (blending) a set of CF algorithms increases the accuracy and outperforms any single CF algorithm. Furthermore, we show how to use ensemble methods for blending predictors in order to outperform a single blending algorithm. The dataset and the source code for the ensemble blending are available online.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"285","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 285
Abstract
We analyze the application of ensemble learning to recommender systems on the Netflix Prize dataset. For our analysis we use a set of diverse state-of-the-art collaborative filtering (CF) algorithms, which include: SVD, Neighborhood Based Approaches, Restricted Boltzmann Machine, Asymmetric Factor Model and Global Effects. We show that linearly combining (blending) a set of CF algorithms increases the accuracy and outperforms any single CF algorithm. Furthermore, we show how to use ensemble methods for blending predictors in order to outperform a single blending algorithm. The dataset and the source code for the ensemble blending are available online.