Md Irfanul Haque Siddiqui, Latif Arifudin, I. Alnaser, Khalid Alluhydan
{"title":"Numerical Investigation on the Performance of Prosthetic Running Blades by Using Different Materials","authors":"Md Irfanul Haque Siddiqui, Latif Arifudin, I. Alnaser, Khalid Alluhydan","doi":"10.57197/jdr-2023-0001","DOIUrl":null,"url":null,"abstract":"The amputation of a lower limb for humans is one of the most traumatic experiences, both physically and emotionally. Prosthetic running blades provide disabled persons with an opportunity to participate in sports and thus help to improve their psychological health. They also allow them to participate in activities that were previously unavailable to them due to financial constraints. In the current study, we looked at how different materials affected the functionality of prosthetic running blades. We investigated the static behavior of a prosthetic running blade using finite element modeling. Under various load circumstances, we conducted numerical simulation using a variety of materials, including titanium alloy (grade 5), carbon fiber, stainless steel (AISI 316), and aluminum alloy (2024 T4). We studied three major load conditions: rest (700 N), walking (1400 N), and running (2200 N). To understand the performance depending on the selection of materials, we evaluated total deformation, equivalent stress, and strain energy in the design of our experiment. The titanium alloy is more durable and has a higher tensile strength. The high cost of manufacture for titanium alloy, however, is a major deterrent to its use in running blades. It was noticed that the aluminum alloy (2024 T4) blade goes under much deformation as compared to titanium and carbon fiber-made running blades. Furthermore, carbon fibers offer excellent mechanical properties, which are essential for creating running blades. It has outstanding tensile properties. Additionally, the low density of carbon fiber has the added advantage of making running blades lighter.","PeriodicalId":46073,"journal":{"name":"Scandinavian Journal of Disability Research","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Disability Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57197/jdr-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 4
Abstract
The amputation of a lower limb for humans is one of the most traumatic experiences, both physically and emotionally. Prosthetic running blades provide disabled persons with an opportunity to participate in sports and thus help to improve their psychological health. They also allow them to participate in activities that were previously unavailable to them due to financial constraints. In the current study, we looked at how different materials affected the functionality of prosthetic running blades. We investigated the static behavior of a prosthetic running blade using finite element modeling. Under various load circumstances, we conducted numerical simulation using a variety of materials, including titanium alloy (grade 5), carbon fiber, stainless steel (AISI 316), and aluminum alloy (2024 T4). We studied three major load conditions: rest (700 N), walking (1400 N), and running (2200 N). To understand the performance depending on the selection of materials, we evaluated total deformation, equivalent stress, and strain energy in the design of our experiment. The titanium alloy is more durable and has a higher tensile strength. The high cost of manufacture for titanium alloy, however, is a major deterrent to its use in running blades. It was noticed that the aluminum alloy (2024 T4) blade goes under much deformation as compared to titanium and carbon fiber-made running blades. Furthermore, carbon fibers offer excellent mechanical properties, which are essential for creating running blades. It has outstanding tensile properties. Additionally, the low density of carbon fiber has the added advantage of making running blades lighter.