{"title":"Learning rate of gradient descent multi-dividing ontology algorithm","authors":"Jianzhang Wu, X. Yu, Wei Gao","doi":"10.1504/IJMTM.2014.066699","DOIUrl":null,"url":null,"abstract":"As acknowledge representation model, ontology has wide applications in information retrieval and other disciplines. Ontology concept similarity calculation is a key issue in these applications. One approach for ontology application is to learn an optimal ontology score function which maps each vertex in graph into a real-value. And the similarity between vertices is measured by the difference of their corresponding scores. The multi-dividing ontology algorithm is an ontology learning trick such that the model divides ontology vertices into k parts correspond to the k classes of rates. In this paper, we propose the gradient descent multi-dividing ontology algorithm based on iterative gradient computation and yield the learning rates with general convex losses by virtue of the suitable step size and regularisation parameter selection.","PeriodicalId":38792,"journal":{"name":"International Journal of Manufacturing Technology and Management","volume":"5 1","pages":"217-230"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMTM.2014.066699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
As acknowledge representation model, ontology has wide applications in information retrieval and other disciplines. Ontology concept similarity calculation is a key issue in these applications. One approach for ontology application is to learn an optimal ontology score function which maps each vertex in graph into a real-value. And the similarity between vertices is measured by the difference of their corresponding scores. The multi-dividing ontology algorithm is an ontology learning trick such that the model divides ontology vertices into k parts correspond to the k classes of rates. In this paper, we propose the gradient descent multi-dividing ontology algorithm based on iterative gradient computation and yield the learning rates with general convex losses by virtue of the suitable step size and regularisation parameter selection.