M. Dli, A. Puchkov, Nikolay N. Prokimnov, Boris V. Okunev
{"title":"Fuzzy model of a multi-stage chemical-energy-technological processing system fine ore raw materials","authors":"M. Dli, A. Puchkov, Nikolay N. Prokimnov, Boris V. Okunev","doi":"10.37791/2687-0649-2023-18-3-92-104","DOIUrl":null,"url":null,"abstract":"The results of the study, the purpose of which was to build a software model of a multi-stage integrated system for processing finely dispersed ore raw materials, are presented. The role of such raw materials can be processed waste at mining and processing plants of apatite-nepheline and other types of ores, which accumulate in large volumes in tailing dumps. They create a significant environmental threat in the territories adjacent to the plants due to weathering, dust formation, penetration into the soil and aquifers of chemical compounds and substances hazardous to human health. Therefore, the improvement of existing production processes, the development of new technological systems for mining and processing plants, including the application of the principles of the circular economy, waste recycling, justifies the relevance of the chosen research area. The proposed program model is based on the use of trainable trees of systems (blocks) of fuzzy inference of the first and second types. This approach made it possible to avoid unnecessary complication of the bases of fuzzy inference rules when using only one fuzzy block when building a multi-parameter model of the entire multi-stage complex system. The use of several fuzzy inference blocks that describe the behavior of individual units of the system and their configuration in accordance with the physical structure of the system allows the use of relatively simple sets of rules for individual blocks. The joint selection of their parameters when training a tree of fuzzy blocks makes it possible to achieve high accuracy of the solutions obtained. The novelty of the research results is the proposed software fuzzy model of an integrated system for processing finely dispersed ore raw materials. The results of a simulation experiment conducted in the MatLab environment using a synthetic data set generated in Simulink are presented. The results showed that the trained fuzzy model provides good fidelity of the parameters and variables from the test part of the synthetic set.","PeriodicalId":44195,"journal":{"name":"Journal of Applied Mathematics & Informatics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics & Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37791/2687-0649-2023-18-3-92-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The results of the study, the purpose of which was to build a software model of a multi-stage integrated system for processing finely dispersed ore raw materials, are presented. The role of such raw materials can be processed waste at mining and processing plants of apatite-nepheline and other types of ores, which accumulate in large volumes in tailing dumps. They create a significant environmental threat in the territories adjacent to the plants due to weathering, dust formation, penetration into the soil and aquifers of chemical compounds and substances hazardous to human health. Therefore, the improvement of existing production processes, the development of new technological systems for mining and processing plants, including the application of the principles of the circular economy, waste recycling, justifies the relevance of the chosen research area. The proposed program model is based on the use of trainable trees of systems (blocks) of fuzzy inference of the first and second types. This approach made it possible to avoid unnecessary complication of the bases of fuzzy inference rules when using only one fuzzy block when building a multi-parameter model of the entire multi-stage complex system. The use of several fuzzy inference blocks that describe the behavior of individual units of the system and their configuration in accordance with the physical structure of the system allows the use of relatively simple sets of rules for individual blocks. The joint selection of their parameters when training a tree of fuzzy blocks makes it possible to achieve high accuracy of the solutions obtained. The novelty of the research results is the proposed software fuzzy model of an integrated system for processing finely dispersed ore raw materials. The results of a simulation experiment conducted in the MatLab environment using a synthetic data set generated in Simulink are presented. The results showed that the trained fuzzy model provides good fidelity of the parameters and variables from the test part of the synthetic set.