On Dirichlet series similar to Hadamard compositions in half-plane

IF 1 Q1 MATHEMATICS
Andriy Ivanovych Bandura, O. Mulyava, M. Sheremeta
{"title":"On Dirichlet series similar to Hadamard compositions in half-plane","authors":"Andriy Ivanovych Bandura, O. Mulyava, M. Sheremeta","doi":"10.15330/cmp.15.1.180-195","DOIUrl":null,"url":null,"abstract":"Let $F(s)=\\sum\\limits_{n=1}^{\\infty}a_n\\exp\\{s\\lambda_n\\}$ and $F_j(s)=\\sum\\limits_{n=1}^{\\infty}a_{n,j}\\exp\\{s\\lambda_n\\},$ $j=\\overline{1,p},$ be Dirichlet series with exponents $0\\le\\lambda_n\\uparrow+\\infty,$ $n\\to\\infty,$ and the abscissas of absolutely convergence equal to $0$. The function $F$ is called Hadamard composition of the genus $m\\ge 1$ of the functions $F_j$ if $a_n=P(a_{n,1},\\dots ,a_{n,p})$, where $$P(x_1,\\dots ,x_p)=\\sum\\limits_{k_1+\\dots+k_p=m}c_{k_1\\dots\\, k_p}x_1^{k_1}\\cdots x_p^{k_p}$$ is a homogeneous polynomial of degree $m$. In terms of generalized orders and convergence classes the connection between the growth of the functions $F_j$ and the growth of the Hadamard composition $F$ of the genus $m\\ge 1$ of $F_j$ is investigated. The pseudostarlikeness and pseudoconvexity of the Hadamard composition of the genus $m\\ge 1$ are studied.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.180-195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ and $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\},$ $j=\overline{1,p},$ be Dirichlet series with exponents $0\le\lambda_n\uparrow+\infty,$ $n\to\infty,$ and the abscissas of absolutely convergence equal to $0$. The function $F$ is called Hadamard composition of the genus $m\ge 1$ of the functions $F_j$ if $a_n=P(a_{n,1},\dots ,a_{n,p})$, where $$P(x_1,\dots ,x_p)=\sum\limits_{k_1+\dots+k_p=m}c_{k_1\dots\, k_p}x_1^{k_1}\cdots x_p^{k_p}$$ is a homogeneous polynomial of degree $m$. In terms of generalized orders and convergence classes the connection between the growth of the functions $F_j$ and the growth of the Hadamard composition $F$ of the genus $m\ge 1$ of $F_j$ is investigated. The pseudostarlikeness and pseudoconvexity of the Hadamard composition of the genus $m\ge 1$ are studied.
半平面上类似Hadamard组合的Dirichlet级数
设$F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$和$F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\},$$j=\overline{1,p},$为指数为$0\le\lambda_n\uparrow+\infty,$$n\to\infty,$的狄利克雷级数,绝对值收敛的横坐标等于$0$。函数$F$称为函数$F_j$如果$a_n=P(a_{n,1},\dots ,a_{n,p})$的属$m\ge 1$的Hadamard复合,其中$$P(x_1,\dots ,x_p)=\sum\limits_{k_1+\dots+k_p=m}c_{k_1\dots\, k_p}x_1^{k_1}\cdots x_p^{k_p}$$是次为$m$的齐次多项式。从广义阶和收敛类的角度,研究了函数$F_j$的增长与$F_j$的属$m\ge 1$的Hadamard组合$F$的增长之间的联系。研究了$m\ge 1$属的Hadamard成分的伪星形和伪凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信