Algebraic independence and linear difference equations

IF 2.5 1区 数学 Q1 MATHEMATICS
B. Adamczewski, T. Dreyfus, C. Hardouin, M. Wibmer
{"title":"Algebraic independence and linear difference equations","authors":"B. Adamczewski, T. Dreyfus, C. Hardouin, M. Wibmer","doi":"10.4171/jems/1316","DOIUrl":null,"url":null,"abstract":"We consider pairs of automorphisms $(\\phi,\\sigma)$ acting on fields of Laurent or Puiseux series: pairs of shift operators $(\\phi\\colon x\\mapsto x+h_1, \\sigma\\colon x\\mapsto x+h_2)$, of $q$-difference operators $(\\phi\\colon x\\mapsto q_1x,\\ \\sigma\\colon x\\mapsto q_2x)$, and of Mahler operators $(\\phi\\colon x\\mapsto x^{p_1},\\ \\sigma\\colon x\\mapsto x^{p_2})$. Given a solution $f$ to a linear $\\phi$-equation and a solution $g$ to a linear $\\sigma$-equation, both transcendental, we show that $f$ and $g$ are algebraically independent over the field of rational functions, assuming that the corresponding parameters are sufficiently independent. As a consequence, we settle a conjecture about Mahler functions put forward by Loxton and van der Poorten in 1987. We also give an application to the algebraic independence of $q$-hypergeometric functions. Our approach provides a general strategy to study this kind of question and is based on a suitable Galois theory: the $\\sigma$-Galois theory of linear $\\phi$-equations.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1316","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We consider pairs of automorphisms $(\phi,\sigma)$ acting on fields of Laurent or Puiseux series: pairs of shift operators $(\phi\colon x\mapsto x+h_1, \sigma\colon x\mapsto x+h_2)$, of $q$-difference operators $(\phi\colon x\mapsto q_1x,\ \sigma\colon x\mapsto q_2x)$, and of Mahler operators $(\phi\colon x\mapsto x^{p_1},\ \sigma\colon x\mapsto x^{p_2})$. Given a solution $f$ to a linear $\phi$-equation and a solution $g$ to a linear $\sigma$-equation, both transcendental, we show that $f$ and $g$ are algebraically independent over the field of rational functions, assuming that the corresponding parameters are sufficiently independent. As a consequence, we settle a conjecture about Mahler functions put forward by Loxton and van der Poorten in 1987. We also give an application to the algebraic independence of $q$-hypergeometric functions. Our approach provides a general strategy to study this kind of question and is based on a suitable Galois theory: the $\sigma$-Galois theory of linear $\phi$-equations.
代数无关性与线性差分方程
我们考虑作用于Laurent或Puiseux级数域中的自同构对$(\phi,\sigma)$:位移算子对$(\phi\colon x\mapsto x+h_1, \sigma\colon x\mapsto x+h_2)$、$q$ -差分算子对$(\phi\colon x\mapsto q_1x,\ \sigma\colon x\mapsto q_2x)$和Mahler算子对$(\phi\colon x\mapsto x^{p_1},\ \sigma\colon x\mapsto x^{p_2})$。给出一个线性$\phi$ -方程的解$f$和一个线性$\sigma$ -方程的解$g$,两者都是超越的,我们证明$f$和$g$在有理函数域上是代数独立的,假设相应的参数是足够独立的。因此,我们解决了Loxton和van der Poorten在1987年提出的关于马勒函数的猜想。给出了$q$ -超几何函数的代数无关性的一个应用。我们的方法提供了一种研究这类问题的一般策略,并基于一种合适的伽罗瓦理论:线性$\phi$方程的$\sigma$ -伽罗瓦理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信