Classification at infinity of polynomials of degree 3 in 3 variables

IF 0.4 Q4 MATHEMATICS
N. Ribeiro
{"title":"Classification at infinity of polynomials of degree 3 in 3 variables","authors":"N. Ribeiro","doi":"10.5427/jsing.2022.25r","DOIUrl":null,"url":null,"abstract":"We classify singularities at infinity of polynomials of degree 3 in 3 variables, f(x0, x1, x2) = f1(x0, x1, x2) + f2(x0, x1, x2) + f3(x0, x1, x2), fi homogeneous polynomial of degree i, i = 1, 2, 3. Based on this classification, we calculate the jump in the Milnor number of an isolated singularity at infinity, when we pass from the special fiber to a generic fiber. As an application of the results, we investigate the existence of global fibrations of degree 3 polynomials in C and search for information about the topology of the fibers in each equivalence class.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.25r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We classify singularities at infinity of polynomials of degree 3 in 3 variables, f(x0, x1, x2) = f1(x0, x1, x2) + f2(x0, x1, x2) + f3(x0, x1, x2), fi homogeneous polynomial of degree i, i = 1, 2, 3. Based on this classification, we calculate the jump in the Milnor number of an isolated singularity at infinity, when we pass from the special fiber to a generic fiber. As an application of the results, we investigate the existence of global fibrations of degree 3 polynomials in C and search for information about the topology of the fibers in each equivalence class.
3次多项式在无穷远处的3变量分类
我们将3次多项式在无穷处的奇点分类为3个变量,f(x0, x1, x2) = f1(x0, x1, x2) + f2(x0, x1, x2) + f3(x0, x1, x2), fi次i, i = 1,2,3齐次多项式。在此基础上,我们计算了在无穷远处,当我们从特殊光纤过渡到普通光纤时,孤立奇点的米尔诺数的跃变。作为结果的应用,我们研究了C中3次多项式的全局纤维的存在性,并搜索了每个等价类中纤维的拓扑信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信