A hierarchical cluster approach toward understanding the regional variable in country conflict modeling

Q3 Decision Sciences
Benjamin D. Leiby, D. Ahner
{"title":"A hierarchical cluster approach toward understanding the regional variable in country conflict modeling","authors":"Benjamin D. Leiby, D. Ahner","doi":"10.1108/jdal-11-2022-0011","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to examine how the regional variable in country conflict modeling affects forecast accuracy and identifies a methodology to further improve the predictions.Design/methodology/approachThis paper uses statistical learning methods to both evaluate the quantity of data for clustering countries along with quantifying accuracy according to the number of clusters used.FindingsThis study demonstrates that increasing the number of clusters for modeling improves the ability to predict conflict as long as the models are robust.Originality/valueThis study investigates the quantity of clusters used in conflict modeling, while previous research assumes a specific quantity before modeling.","PeriodicalId":32838,"journal":{"name":"Journal of Defense Analytics and Logistics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Analytics and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jdal-11-2022-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThis paper aims to examine how the regional variable in country conflict modeling affects forecast accuracy and identifies a methodology to further improve the predictions.Design/methodology/approachThis paper uses statistical learning methods to both evaluate the quantity of data for clustering countries along with quantifying accuracy according to the number of clusters used.FindingsThis study demonstrates that increasing the number of clusters for modeling improves the ability to predict conflict as long as the models are robust.Originality/valueThis study investigates the quantity of clusters used in conflict modeling, while previous research assumes a specific quantity before modeling.
一种层次聚类方法来理解国家冲突模型中的区域变量
本文旨在研究国家冲突模型中的区域变量如何影响预测准确性,并确定一种进一步改进预测的方法。设计/方法/方法本文使用统计学习方法来评估聚类国家的数据数量以及根据使用的聚类数量量化的准确性。本研究表明,只要模型是鲁棒的,增加用于建模的聚类数量可以提高预测冲突的能力。原创性/价值本研究调查了冲突建模中使用的集群数量,而以往的研究在建模前假设了特定的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信