Neha Agarwal, D. Nellans, Mike O'Connor, S. Keckler, T. Wenisch
{"title":"Unlocking bandwidth for GPUs in CC-NUMA systems","authors":"Neha Agarwal, D. Nellans, Mike O'Connor, S. Keckler, T. Wenisch","doi":"10.1109/HPCA.2015.7056046","DOIUrl":null,"url":null,"abstract":"Historically, GPU-based HPC applications have had a substantial memory bandwidth advantage over CPU-based workloads due to using GDDR rather than DDR memory. However, past GPUs required a restricted programming model where application data was allocated up front and explicitly copied into GPU memory before launching a GPU kernel by the programmer. Recently, GPUs have eased this requirement and now can employ on-demand software page migration between CPU and GPU memory to obviate explicit copying. In the near future, CC-NUMA GPU-CPU systems will appear where software page migration is an optional choice and hardware cache-coherence can also support the GPU accessing CPU memory directly. In this work, we describe the trade-offs and considerations in relying on hardware cache-coherence mechanisms versus using software page migration to optimize the performance of memory-intensive GPU workloads. We show that page migration decisions based on page access frequency alone are a poor solution and that a broader solution using virtual address-based program locality to enable aggressive memory prefetching combined with bandwidth balancing is required to maximize performance. We present a software runtime system requiring minimal hardware support that, on average, outperforms CC-NUMA-based accesses by 1.95 ×, performs 6% better than the legacy CPU to GPU memcpy regime by intelligently using both CPU and GPU memory bandwidth, and comes within 28% of oracular page placement, all while maintaining the relaxed memory semantics of modern GPUs.","PeriodicalId":6593,"journal":{"name":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","volume":"59 1","pages":"354-365"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2015.7056046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
Historically, GPU-based HPC applications have had a substantial memory bandwidth advantage over CPU-based workloads due to using GDDR rather than DDR memory. However, past GPUs required a restricted programming model where application data was allocated up front and explicitly copied into GPU memory before launching a GPU kernel by the programmer. Recently, GPUs have eased this requirement and now can employ on-demand software page migration between CPU and GPU memory to obviate explicit copying. In the near future, CC-NUMA GPU-CPU systems will appear where software page migration is an optional choice and hardware cache-coherence can also support the GPU accessing CPU memory directly. In this work, we describe the trade-offs and considerations in relying on hardware cache-coherence mechanisms versus using software page migration to optimize the performance of memory-intensive GPU workloads. We show that page migration decisions based on page access frequency alone are a poor solution and that a broader solution using virtual address-based program locality to enable aggressive memory prefetching combined with bandwidth balancing is required to maximize performance. We present a software runtime system requiring minimal hardware support that, on average, outperforms CC-NUMA-based accesses by 1.95 ×, performs 6% better than the legacy CPU to GPU memcpy regime by intelligently using both CPU and GPU memory bandwidth, and comes within 28% of oracular page placement, all while maintaining the relaxed memory semantics of modern GPUs.