{"title":"Design of Plasmonic Catalysts Utilizing Nanostructures","authors":"H. Yamashita, K. Mori, Yasutaka Kuwahara","doi":"10.1627/JPI.64.155","DOIUrl":null,"url":null,"abstract":"This review describes the design of nanostructured plasmonic catalysts, such as nanoparticles and nanosheet morphologies, that strongly absorb visible light over a wide range of the solar spectrum due to localized surface plasmon resonance (LSPR) and application to enhanced hydrogen evolution. A new method for the synthesis of Ag nanoparticles, with color dependent on the particle size and morphology, combined microwave heating and the use of mesoporous silica materials. Further combination with Pd nanoparticles significantly enhanced the catalytic activities for hydrogen production from ammonia borane (NH3BH3) compared with the inherent Ag catalysts under both dark and visible-light irradiation conditions. We also describe the synergistic catalysis activities of plasmonic Au(core)–Pd(shell) nanoparticles supported on amine-functionalized metal-organic frameworks (MOFs) for boosting room-temperature hydrogen production from formic acid (HCOOH) under visible light irradiation. Our search for plasmonic materials based on earth abundant elements found that reduced molybdenum oxide (HxMoO3−y) nanosheet with oxygen defects and doped hydrogen displayed intense absorption in a wide range from the visible to the near-infrared region. This unique plasmonic HxMoO3−y nanosheet can enhance dehydrogenation from ammonia borane under visible light irradiation.","PeriodicalId":17362,"journal":{"name":"Journal of The Japan Petroleum Institute","volume":"26 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Petroleum Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1627/JPI.64.155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This review describes the design of nanostructured plasmonic catalysts, such as nanoparticles and nanosheet morphologies, that strongly absorb visible light over a wide range of the solar spectrum due to localized surface plasmon resonance (LSPR) and application to enhanced hydrogen evolution. A new method for the synthesis of Ag nanoparticles, with color dependent on the particle size and morphology, combined microwave heating and the use of mesoporous silica materials. Further combination with Pd nanoparticles significantly enhanced the catalytic activities for hydrogen production from ammonia borane (NH3BH3) compared with the inherent Ag catalysts under both dark and visible-light irradiation conditions. We also describe the synergistic catalysis activities of plasmonic Au(core)–Pd(shell) nanoparticles supported on amine-functionalized metal-organic frameworks (MOFs) for boosting room-temperature hydrogen production from formic acid (HCOOH) under visible light irradiation. Our search for plasmonic materials based on earth abundant elements found that reduced molybdenum oxide (HxMoO3−y) nanosheet with oxygen defects and doped hydrogen displayed intense absorption in a wide range from the visible to the near-infrared region. This unique plasmonic HxMoO3−y nanosheet can enhance dehydrogenation from ammonia borane under visible light irradiation.
期刊介绍:
“Journal of the Japan Petroleum Institute”publishes articles on petroleum exploration, petroleum
refining, petrochemicals and relevant subjects (such as natural gas, coal and so on). Papers published in this journal are
also put out as the electronic journal editions on the web.
Topics may range from fundamentals to applications. The latter may deal with a variety of subjects, such as: case studies in the development of oil fields, design and operational data of industrial processes, performances of commercial products and others