Gene expression informatics with an automatic histogram-type membership function for non-uniform data

IF 0.4 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Akito Daiba, S. Ito, Tsutomu Takeuchi, M. Yohda
{"title":"Gene expression informatics with an automatic histogram-type membership function for non-uniform data","authors":"Akito Daiba, S. Ito, Tsutomu Takeuchi, M. Yohda","doi":"10.1273/CBIJ.10.13","DOIUrl":null,"url":null,"abstract":"The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"62 1","pages":"13-23"},"PeriodicalIF":0.4000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.10.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.
具有非均匀数据自动直方图型隶属函数的基因表达信息学
基因表达数据的不一致性是造成基因表达分析困难的因素之一。基因表达数据通常不遵循正态分布,而是在每个组中遵循不同的分布。因此,不可能应用基本的统计技术,如t检验。在这项研究中,我们开发了一种使用原始隶属函数的模糊逻辑算法对微阵列获得的基因表达数据进行分析的方法。该方法自动评估来自患者组基因表达信息直方图的数据。利用这种方法,我们预测了抗tnf -α治疗类风湿关节炎的疗效。我们基于类风湿关节炎患者治疗前外周血基因表达数据,建立了抗tnf -α治疗14周效果的预测模型。该模型在模型建立数据组的预测成功率为89%,在训练组为94%,在验证组为89%。结果表明,本文提出的方法可能是一种非常有效的基因表达分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem-Bio Informatics Journal
Chem-Bio Informatics Journal BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
0.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信