{"title":"Gene expression informatics with an automatic histogram-type membership function for non-uniform data","authors":"Akito Daiba, S. Ito, Tsutomu Takeuchi, M. Yohda","doi":"10.1273/CBIJ.10.13","DOIUrl":null,"url":null,"abstract":"The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"62 1","pages":"13-23"},"PeriodicalIF":0.4000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.10.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.