Coalescing Global and Local Information for Procedural Text Understanding

Kaixin Ma, Filip Ilievski, Jonathan M Francis, Eric Nyberg, A. Oltramari
{"title":"Coalescing Global and Local Information for Procedural Text Understanding","authors":"Kaixin Ma, Filip Ilievski, Jonathan M Francis, Eric Nyberg, A. Oltramari","doi":"10.48550/arXiv.2208.12848","DOIUrl":null,"url":null,"abstract":"Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. We identify three core aspects required for modeling this task, namely the local and global view of the inputs, as well as the global view of outputs. Prior methods have considered a subset of these aspects, which leads to either low precision or low recall. In this paper, we propose a new model Coalescing Global and Local Information (CGLI), which builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. Moreover, we extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results, while experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"11 1","pages":"1534-1545"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.12848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. We identify three core aspects required for modeling this task, namely the local and global view of the inputs, as well as the global view of outputs. Prior methods have considered a subset of these aspects, which leads to either low precision or low recall. In this paper, we propose a new model Coalescing Global and Local Information (CGLI), which builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. Moreover, we extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results, while experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.
过程性文本理解的全局和局部信息合并
程序文本理解是一项具有挑战性的语言推理任务,它要求模型在叙事的发展过程中跟踪实体状态。我们确定了建模此任务所需的三个核心方面,即输入的局部和全局视图,以及输出的全局视图。先前的方法只考虑了这些方面的一个子集,这导致精度低或召回率低。在本文中,我们提出了一种新的全局和局部信息合并模型(CGLI),该模型考虑整个上下文(全局输入),构建实体感知和时间步长感知的输入表示(局部输入),并通过结构化的预测目标(全局输出)共同建模实体状态。因此,CGLI同时优化了准确率和召回率。此外,我们用额外的输出层扩展CGLI,并将其集成到故事推理框架中。在一个流行的程序文本理解数据集上的大量实验表明,我们的模型达到了最先进的结果,而在故事推理基准上的实验表明,我们的模型对下游推理有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信