The second geometric-arithmetic index for trees and unicyclic graphs

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
N. Dehgardi, H. Aram, A. Khodkar
{"title":"The second geometric-arithmetic index for trees and unicyclic graphs","authors":"N. Dehgardi, H. Aram, A. Khodkar","doi":"10.22052/IJMC.2017.81079.1277","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree of the tree. We also find a sharp upper bound for $GA_2(G)$, where $G$ is a unicyclic graph, in terms of the order, maximum degree and girth of $G$. In addition, we characterize the trees and unicyclic graphs which achieve the upper bounds.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.81079.1277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree of the tree. We also find a sharp upper bound for $GA_2(G)$, where $G$ is a unicyclic graph, in terms of the order, maximum degree and girth of $G$. In addition, we characterize the trees and unicyclic graphs which achieve the upper bounds.
树和单环图的第二几何算术索引
设$G$是一个有边集$E(G)$的有限简单图。第二个几何算术索引定义为$GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$,其中$n_u$表示$G$中靠近$u$而不是靠近$v$的顶点数。本文给出了$GA_2(T)$,其中$T$为树,关于树的阶数和最大度的一个明显的上界。我们还发现了$GA_2(G)$,其中$G$是单环图,关于$G$的阶数、最大度和周长,有一个明显的上界。此外,我们还刻画了达到上界的树和单环图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信