Visual Interactive Creation, Customization, and Analysis of Data Quality Metrics

C. Bors, T. Gschwandtner, Simone Kriglstein, S. Miksch, M. Pohl
{"title":"Visual Interactive Creation, Customization, and Analysis of Data Quality Metrics","authors":"C. Bors, T. Gschwandtner, Simone Kriglstein, S. Miksch, M. Pohl","doi":"10.1145/3190578","DOIUrl":null,"url":null,"abstract":"During data preprocessing, analysts spend a significant part of their time and effort profiling the quality of the data along with cleansing and transforming the data for further analysis. While quality metrics—ranging from general to domain-specific measures—support assessment of the quality of a dataset, there are hardly any approaches to visually support the analyst in customizing and applying such metrics. Yet, visual approaches could facilitate users’ involvement in data quality assessment. We present MetricDoc, an interactive environment for assessing data quality that provides customizable, reusable quality metrics in combination with immediate visual feedback. Moreover, we provide an overview visualization of these quality metrics along with error visualizations that facilitate interactive navigation of the data to determine the causes of quality issues present in the data. In this article, we describe the architecture, design, and evaluation of MetricDoc, which underwent several design cycles, including heuristic evaluation and expert reviews as well as a focus group with data quality, human-computer interaction, and visual analytics experts.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"12 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

During data preprocessing, analysts spend a significant part of their time and effort profiling the quality of the data along with cleansing and transforming the data for further analysis. While quality metrics—ranging from general to domain-specific measures—support assessment of the quality of a dataset, there are hardly any approaches to visually support the analyst in customizing and applying such metrics. Yet, visual approaches could facilitate users’ involvement in data quality assessment. We present MetricDoc, an interactive environment for assessing data quality that provides customizable, reusable quality metrics in combination with immediate visual feedback. Moreover, we provide an overview visualization of these quality metrics along with error visualizations that facilitate interactive navigation of the data to determine the causes of quality issues present in the data. In this article, we describe the architecture, design, and evaluation of MetricDoc, which underwent several design cycles, including heuristic evaluation and expert reviews as well as a focus group with data quality, human-computer interaction, and visual analytics experts.
数据质量度量的可视化交互创建、定制和分析
在数据预处理期间,分析人员花费大量时间和精力分析数据的质量,同时清理和转换数据以供进一步分析。虽然质量度量——从一般到特定领域的度量——支持对数据集质量的评估,但几乎没有任何方法可以直观地支持分析人员定制和应用这些度量。然而,可视化方法可以促进用户参与数据质量评估。我们介绍了MetricDoc,一个用于评估数据质量的交互式环境,它提供了可定制的、可重用的质量指标,并结合了即时的视觉反馈。此外,我们提供了这些质量度量的可视化概述,以及有助于数据交互导航的错误可视化,以确定数据中存在的质量问题的原因。在本文中,我们描述了MetricDoc的架构、设计和评估,它经历了几个设计周期,包括启发式评估和专家评审,以及由数据质量、人机交互和视觉分析专家组成的焦点小组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信