On compact subsets of Sobolev spaces on manifolds

L. Skrzypczak, C. Tintarev
{"title":"On compact subsets of Sobolev spaces on manifolds","authors":"L. Skrzypczak, C. Tintarev","doi":"10.1090/tran/8322","DOIUrl":null,"url":null,"abstract":"It is common that a Sobolev space defined on $\\mathbb{R}^m$ has a non-compact embedding into an $L^p$-space, but it has subspaces for which this embedding becomes compact. There are three well known cases of such subspaces, the Rellich compactness, for a subspace of functions on a bounded domain (or an unbounded domain, sufficiently thin at infinity), the Strauss compactness, for a subspace of radially symmetric functions in $\\mathbb{R}^m$, and the weighted Sobolev spaces. Known generalizations of Strauss compactness include subspaces of functions with block-radial symmetry, subspaces of functions with certain symmetries on Riemannian manifolds, as well as similar subspaces of more general Besov and Triebel-Lizorkin spaces. Presence of symmetries can be interpreted in terms of the rising critical Sobolev exponent corresponding to the smaller effective dimension of the quotient space.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

It is common that a Sobolev space defined on $\mathbb{R}^m$ has a non-compact embedding into an $L^p$-space, but it has subspaces for which this embedding becomes compact. There are three well known cases of such subspaces, the Rellich compactness, for a subspace of functions on a bounded domain (or an unbounded domain, sufficiently thin at infinity), the Strauss compactness, for a subspace of radially symmetric functions in $\mathbb{R}^m$, and the weighted Sobolev spaces. Known generalizations of Strauss compactness include subspaces of functions with block-radial symmetry, subspaces of functions with certain symmetries on Riemannian manifolds, as well as similar subspaces of more general Besov and Triebel-Lizorkin spaces. Presence of symmetries can be interpreted in terms of the rising critical Sobolev exponent corresponding to the smaller effective dimension of the quotient space.
流形上Sobolev空间的紧子集
通常在$\mathbb{R}^m$上定义的Sobolev空间有一个非紧的嵌入到$L^p$-空间中,但是它的子空间使得这种嵌入变得紧。这样的子空间有三种众所周知的情况:有界域上函数的子空间的Rellich紧性(或无界域,在无穷远处足够薄),$\mathbb{R}^m$中径向对称函数的子空间的Strauss紧性,以及加权Sobolev空间。已知的Strauss紧性的推广包括具有块径向对称的函数的子空间,黎曼流形上具有一定对称性的函数的子空间,以及更一般的Besov和triiebel - lizorkin空间的类似子空间。对称性的存在可以用上升的临界Sobolev指数来解释,对应于商空间较小的有效维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信