CONDUCTING ANOVAS WITHOUT DATA

IF 1 Q4 MANAGEMENT
J. Stauffer, A. Saran
{"title":"CONDUCTING ANOVAS WITHOUT DATA","authors":"J. Stauffer, A. Saran","doi":"10.18374/jims-20-1.3","DOIUrl":null,"url":null,"abstract":"We present a simple method for conducting factorial ANOVAs in the absence of data. The method relies on descriptive statistics, namely the mean, variance, and sample size for each cell in the design. We briefly describe how this method can easily generalized to any number of factors, allowing us to analyze n-way factorial ANOVAs with any number of interactions. We then introduce the idea that this method allows us to (a) perform ANOVAs from existing studies that did not themselves perform ANOVAs and (b) combine descriptives from multiple studies in order to cumulate them into a sort of meta-analytic ANOVA.","PeriodicalId":41612,"journal":{"name":"International Journal of Management Studies","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Management Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18374/jims-20-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

We present a simple method for conducting factorial ANOVAs in the absence of data. The method relies on descriptive statistics, namely the mean, variance, and sample size for each cell in the design. We briefly describe how this method can easily generalized to any number of factors, allowing us to analyze n-way factorial ANOVAs with any number of interactions. We then introduce the idea that this method allows us to (a) perform ANOVAs from existing studies that did not themselves perform ANOVAs and (b) combine descriptives from multiple studies in order to cumulate them into a sort of meta-analytic ANOVA.
在没有数据的情况下进行方差分析
我们提出了一种在没有数据的情况下进行因子方差分析的简单方法。该方法依赖于描述性统计,即设计中每个单元的平均值、方差和样本量。我们简要地描述了这种方法如何可以很容易地推广到任何数量的因素,允许我们分析具有任何数量的相互作用的n向因子方差分析。然后,我们介绍了这种方法允许我们(a)从现有的研究中执行ANOVA,这些研究本身没有执行ANOVA, (b)结合来自多个研究的描述,以便将它们累积成一种元分析ANOVA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信