A comparative study of integral order and fractional order models for estimating state-of-charge of lithium-ion battery

Q3 Engineering
Yifan Zhang, T. Sun, Yuejiu Zheng, X. Lai
{"title":"A comparative study of integral order and fractional order models for estimating state-of-charge of lithium-ion battery","authors":"Yifan Zhang, T. Sun, Yuejiu Zheng, X. Lai","doi":"10.1504/ijpt.2020.10030327","DOIUrl":null,"url":null,"abstract":"Battery state estimation is a key technology for battery management systems for electric vehicles, and state-of-charge (SOC) estimation of battery is the basis for numerous state estimations. In this paper, five fractional order equivalent circuit models are compared and evaluated based on a LiNMC cell. First of all, the particle swarm optimisation (PSO) is used to identify the parameters of the fractional order models, and the fractional Kalman filter algorithm is further adopted to estimate the SOC and compared with the SOC estimation obtained by the integral order models. The results indicate that the fractional battery model has higher accuracy, especially in the low SOC interval. Through comparative analysis of several fractional order models, it is found that the fractional order model with the Warburg component can be better describe the battery characteristics in the low SOC interval. From the perspective of model accuracy and computational cost, the addition of the Warburg element to the fractional second-order RC model is the best choice.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpt.2020.10030327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Battery state estimation is a key technology for battery management systems for electric vehicles, and state-of-charge (SOC) estimation of battery is the basis for numerous state estimations. In this paper, five fractional order equivalent circuit models are compared and evaluated based on a LiNMC cell. First of all, the particle swarm optimisation (PSO) is used to identify the parameters of the fractional order models, and the fractional Kalman filter algorithm is further adopted to estimate the SOC and compared with the SOC estimation obtained by the integral order models. The results indicate that the fractional battery model has higher accuracy, especially in the low SOC interval. Through comparative analysis of several fractional order models, it is found that the fractional order model with the Warburg component can be better describe the battery characteristics in the low SOC interval. From the perspective of model accuracy and computational cost, the addition of the Warburg element to the fractional second-order RC model is the best choice.
锂离子电池荷电状态估计的积分阶与分数阶模型比较研究
电池状态估计是电动汽车电池管理系统的关键技术,电池荷电状态估计是众多状态估计的基础。本文对基于LiNMC单元的五种分数阶等效电路模型进行了比较和评价。首先,采用粒子群算法(PSO)对分数阶模型的参数进行辨识,并进一步采用分数阶卡尔曼滤波算法对系统SOC进行估计,并与积分阶模型的SOC估计结果进行比较。结果表明,分数电池模型具有较高的精度,特别是在低荷电间隔时。通过对几种分数阶模型的比较分析,发现带有Warburg分量的分数阶模型能更好地描述电池低荷电状态下的特性。从模型精度和计算成本的角度考虑,在分数阶二阶RC模型中加入Warburg单元是最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信