Ethyl-Acetate Synthesis in Gas Phase by Immobilised Lipase

Z. Csanádi, R. Kurdi, K. Bélafi-Bakó
{"title":"Ethyl-Acetate Synthesis in Gas Phase by Immobilised Lipase","authors":"Z. Csanádi, R. Kurdi, K. Bélafi-Bakó","doi":"10.1515/316","DOIUrl":null,"url":null,"abstract":"Gas-solid phase biocatalytic reactions offer economic and environmentally sound ways to produce ester compounds, which can be used as natural flavour components, and other types of value-added products. Therefore, the aim of this work was first to study the continuous gas-solid phase manufacture of ethyl-acetate (EtAc), which is an important fruit flavour compound, from ethanol (EtOH) and acetic acid (AcAc) applying immobilised Candida antarctica lipase B enzyme in a self-constructed bioreactor and then to determine the effects of initial substrate composition, applied temperature, and the amount of used enzyme on the yield. It can be concluded that there was a well-defined connection between the yield of the ethyl-acetate product, the temperature and the amount of used enzyme, while the correlation between the initial substrate composition and the product yield could not be described so easily. The activation energy of the esterification was found to be much lower in our system than that of the same enzymatic reaction carried out in other reaction media, such as organic solvent system, ionic liquid, etc.","PeriodicalId":13010,"journal":{"name":"Hungarian Journal of Industrial Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industrial Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Gas-solid phase biocatalytic reactions offer economic and environmentally sound ways to produce ester compounds, which can be used as natural flavour components, and other types of value-added products. Therefore, the aim of this work was first to study the continuous gas-solid phase manufacture of ethyl-acetate (EtAc), which is an important fruit flavour compound, from ethanol (EtOH) and acetic acid (AcAc) applying immobilised Candida antarctica lipase B enzyme in a self-constructed bioreactor and then to determine the effects of initial substrate composition, applied temperature, and the amount of used enzyme on the yield. It can be concluded that there was a well-defined connection between the yield of the ethyl-acetate product, the temperature and the amount of used enzyme, while the correlation between the initial substrate composition and the product yield could not be described so easily. The activation energy of the esterification was found to be much lower in our system than that of the same enzymatic reaction carried out in other reaction media, such as organic solvent system, ionic liquid, etc.
固定化脂肪酶气相合成乙酸乙酯
气固相生物催化反应提供了经济和环保的方法来生产酯类化合物,这些化合物可以用作天然风味成分,以及其他类型的增值产品。因此,本研究的目的是首先在自建的生物反应器中,利用固定化的南极念珠菌脂肪酶B酶,研究由乙醇(EtOH)和醋酸(AcAc)连续气固相生产乙酸乙酯(EtAc),乙酸乙酯是一种重要的水果风味化合物,然后确定初始底物组成、施加温度和酶用量对产量的影响。由此可见,乙酸乙酯产物的产率与温度和酶用量之间有明确的关系,而初始底物组成与产物产率之间的关系则不容易描述。在我们的体系中,酯化反应的活化能远低于在其他反应介质(如有机溶剂体系、离子液体等)中进行的相同酶促反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信