{"title":"Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks","authors":"Weizhe Hua, Zhiru Zhang, G. Suh","doi":"10.1145/3195970.3196105","DOIUrl":null,"url":null,"abstract":"A convolutional neural network (CNN) model represents a crucial piece of intellectual property in many applications. Revealing its structure or weights would leak confidential information. In this paper we present novel reverse-engineering attacks on CNNs running on a hardware accelerator, where an adversary can feed inputs to the accelerator and observe the resulting off-chip memory accesses. Our study shows that even with data encryption, the adversary can infer the underlying network structure by exploiting the memory and timing side-channels. We further identify the information leakage on the values of weights when a CNN accelerator performs dynamic zero pruning for off-chip memory accesses. Overall, this work reveals the importance of hiding off-chip memory access pattern to truly protect confidential CNN models.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"202","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 202
Abstract
A convolutional neural network (CNN) model represents a crucial piece of intellectual property in many applications. Revealing its structure or weights would leak confidential information. In this paper we present novel reverse-engineering attacks on CNNs running on a hardware accelerator, where an adversary can feed inputs to the accelerator and observe the resulting off-chip memory accesses. Our study shows that even with data encryption, the adversary can infer the underlying network structure by exploiting the memory and timing side-channels. We further identify the information leakage on the values of weights when a CNN accelerator performs dynamic zero pruning for off-chip memory accesses. Overall, this work reveals the importance of hiding off-chip memory access pattern to truly protect confidential CNN models.